Universität Tübingen, Mathematisches Institut Dr. Stefan Keppeler

Sommersemester 2021

Groups and Representations

Instruction 4 for the preparation of the lecture on 3 May 2021

2 Representations

2.1 Definitions

Definition: (representation)

Let G be a group and V a vector space. A representation (rep) Γ of G is a homomorphism $G \to \operatorname{GL}(V)$, i.e. into the bijective linear maps $V \to V$, i.e. in particular

$$\Gamma(g)\Gamma(h) = \Gamma(gh) \quad \forall g, h \in G$$

and $\Gamma(e) = 1$ (identity matrix/operator). We call dim V the dimension of the representation, and we will require dim V > 0.

Remarks:

- 1. A representation is an action of G on V (in addition: linear).
- 2. We say that V carries the representation Γ , and we call V the carrier space (of Γ).
- 3. Unless otherwise stated we consider vector spaces over \mathbb{C} (maybe sometimes over \mathbb{R} , probably never over other fields), e.g. \mathbb{C}^n or $L^2(\mathbb{R}^d)$,¹ equipped with a scalar product $\langle \cdot | \cdot \rangle : V \times V \to \mathbb{C}$.
- 4. Choosing an orthonormal basis of V (if finite-dimensional), $\{v_j : j = 1, ..., d = \dim V\}$, each $\Gamma(g)$ corresponds to a $d \times d$ matrix with elements

$$\Gamma(g)_{jk} = \langle v_j | \Gamma(g) v_k \rangle \,,$$

and we call Γ a matrix representation.

We say: The v_i transform under G in the representation Γ .

5. dim $V = \operatorname{tr} \Gamma(e)$ (if V is finite-dimensional)

Example:

a 3-dimensional rep of S_3 https://youtu.be/K2Dt1BGL1Vk (2min) (1)

Determine $\Gamma(\succeq)$ and $\Gamma(\preccurlyeq)$.

Definition: (faithful representation)

We call a representation faithful if the homomorphism $\Gamma: G \to \operatorname{GL}(V)$ is injective, i.e. if different group elements are represented by different matrices.

¹It's best to think of the finite-dimensional case for the moment. In the infinite-dimensional case we'd really want separable Hilbert spaces and bounded linear operators $\Gamma(g)$.

Remarks:

- 1. Every group has the trivial representation, with $\Gamma(g) = \mathbb{1} \, \forall g \in G$; in general not faithful.
- 2. If G has a non-trivial normal subgroup H, then a representation of the quotient group G/H induces a representation of G. This representation is not faithful.

$$https://youtu.be/PS2YTz14a2Y (3 min)$$
(2)

Show: If a non-trivial rep Γ is not faithful, then G has a non-trivial normal subgroup H, and Γ induces a faithful representation of the quotient group G/H.

Definition: (unitary representation)

A representation $\Gamma : G \to \operatorname{GL}(V)$ is called unitary, if $\Gamma(g)$ is unitary $\forall g \in G$, i.e. $\langle \Gamma(g)v | \Gamma(g)w \rangle = \langle v | w \rangle \ \forall v, w \in V.$

Remarks:

- 1. If V is finite-dimensional and if we choose an orthonormal basis, then such a representation is in terms of unitary matrices.
- 2. Unitary representations are important for applications in physics, since it is in terms of them that symmetries are implemented in quantum mechanics (or quantum field theory).

2.2 Equivalent Representations

Definition: (equivalent representations)

We say that two representations $\Gamma: G \to \operatorname{GL}(V)$ and $\tilde{\Gamma}: G \to \operatorname{GL}(W)$ are equivalent, if there exists an invertible linear map $S: V \to W$ such that

$$\Gamma(g) = S^{-1} \,\widetilde{\Gamma}(g) \, S \quad \forall \, g \in G \, .$$

Remark: If the linear map is unitary, i.e. (writing U instead of S) $U: V \to W$ with $\langle U\phi|U\psi\rangle_W = \langle \phi|\psi\rangle_V$ then we say that the representations are unitarily equivalent. For finite-dimensional representations we have $V \cong W \cong \mathbb{C}^{\dim V}$, and by choosing orthonormal bases U becomes a unitary matrix.

Theorem 2. Let G be a finite group, $\Gamma : G \to GL(V)$ a (finite-dimensional) representation and $\langle \cdot | \cdot \rangle$ a scalar product on V. Then Γ is equivalent to a unitary representation.

Proof:
$$(v,w) = \sum_{g \in G} \langle \Gamma(g)v | \Gamma(g)w \rangle$$
 is also a scalar product:
https://youtu.be/-HWa-iaBZVk (4 min) (3)

Let $\{v_j\}$ be an orthonormal basis (ONB) with respect to $\langle \cdot | \cdot \rangle$ and $\{w_j\}$ an ONB with respect to (\cdot, \cdot) . Then there exists an invertible map $S : V \to V$ with $Sw_j = v_j$ (change of basis). Hence

$$(v,w) = \langle Sv|Sw \rangle$$
. https://youtu.be/L_HIR-Ug7nc (4 min) (4)

Finally, $\tilde{\Gamma}$ with $\tilde{\Gamma}(g) = S\Gamma(g)S^{-1}$ is equivalent to Γ and unitary:

2.4 Irreducible Representations

Definition: (invariant subspace)

Let $\Gamma: G \to \operatorname{GL}(V)$ be a representation and $U \subseteq V$ a subspace of V. U is called invariant subspace (with respect to Γ), if $\Gamma(g)v \in U \ \forall v \in U$ and $\forall g \in G$.

Remark: Every carrier space has two trivial invariant subspaces, namely V and $\{0\}$. All other invariant subspace (if there are any) are called non-trivial.

Definition: (irreducible representation & complete reducibility)

We call a representation $\Gamma: G \to \operatorname{GL}(V)$

- (i) irreducible, if V possesses no non-trivial invariant subspace. Then we also call V irreducible with respect to Γ .
- (ii) reducible, if V possesses a non-trivial invariant subspace U.
- (iii) completely reducible, if V can be written as a direct sum of irreducible invariant subspaces.

Abbreviation for "irreducible representation": *irrep*

Example:

$$https://youtu.be/kfpZhLGZ9IA (5min)$$
(6)

Write $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ as linear combination of vectors from U_1 and U_2 . Construct an ONB (with respect to the canonical scalar product) s.t. the first basis vector spans U_1 and the other two span U_2 .