Groups and Representations

Instruction 7 for the preparation of the lecture on 12 May 2021

2.7 The regular representation

Definition: (group algebra)
For a finite group G we define its group algebra $\mathcal{A}(G)$ as the vector space spanned by the group elements, i.e. we form linear combinations

$$
\mathcal{A}(G) \ni r=\sum_{j=1}^{|G|} r_{j} g_{j}, \quad r_{j} \in \mathbb{C}
$$

with multiplication rule

$$
\left(\sum_{j=1}^{|G|} q_{j} g_{j}\right)\left(\sum_{k=1}^{|G|} r_{k} g_{k}\right)=\sum_{j=1}^{|G|} \sum_{k=1}^{|G|} q_{j} r_{k} g_{j} g_{k} .
$$

induced by group multiplication.
Remarks:
https://youtu.be/3QjW40hhVag (3 min)

Now we can write group multiplication as

$$
g g_{j}=\sum_{k=1}^{|G|} g_{k} R(g)_{k j},
$$

where $R(g)_{k j}$ encodes the group table: For g and j fixed, $R(g)_{k j}=1$ for exactly one value of k and it vanishes for all others. R defines a representation of G on $\mathcal{A}(G)$, the so-called regular representation:
https://youtu.be/xgF-ifx0sgg (4 min)

Example:

$$
\begin{equation*}
\text { regular rep } R \text { of } S_{3} \quad \text { https://youtu.be/Hbd2obSIQ1g (} 5 \mathrm{~min} \text {) } \tag{3}
\end{equation*}
$$

Determine $R(\bar{x})$ with the same choice of basis as in the video.
Theorem 7. The regular representation R contains all irreps of G, and the multiplicity of irrep Γ^{j} is given by its dimension d_{j},

$$
R=\bigoplus_{j=1}^{p} d_{j} \Gamma^{j} \quad\left(\begin{array}{r}
p=\begin{array}{c}
\text { number of non-equivalent } \\
\text { irreducible representations }
\end{array}
\end{array}\right) .
$$

Remark: Hence, there exists a regular matrix S such that

$$
S^{-1} R(g) S=\left(\begin{array}{cccccccc}
1 & & & & & & & \\
& \Gamma^{2}(g) & & & & & \\
& & \ddots & & & & \\
& & & \Gamma^{2}(g) & & & \\
& & & & \ddots & & \\
& & & & & \Gamma^{p}(g) & & \\
& & & & & & \ddots & \underbrace{}_{d_{2} \text { blocks }} \\
& & & \Gamma_{d_{p} \text { blocks }}
\end{array}\right) .
$$

Proof:

https://youtu.be/-QPHOcyBLpc (4 min)

Corollary. We have $\sum_{j=1}^{p} d_{j}^{2}=|G|$.
Show this!

2.8 Product representations and Clebsch-Gordan coefficients

Definition: (product representation)

For representations $\Gamma^{\mu}: G \rightarrow \mathrm{GL}(U)$ and $\Gamma^{\nu}: G \rightarrow \mathrm{GL}(V)$ we define the product representation $\Gamma^{\mu \otimes \nu}: G \rightarrow \mathrm{GL}(U \otimes V)$ by

$$
\Gamma^{\mu \otimes \nu}(g)=\Gamma^{\mu}(g) \otimes \Gamma^{\nu}(g) \quad \forall g \in G .
$$

Remarks:

1. $\Gamma^{\mu \otimes \nu}$ is a representation:
https://youtu.be/s8aENniin5Y (3 min)
2. For the characters we have

$$
\chi^{\mu \otimes \nu}(g)=\operatorname{tr} \Gamma^{\mu \otimes \nu}(g)=\operatorname{tr}\left(\Gamma^{\mu}(g) \otimes \Gamma^{\nu}(g)\right)=\operatorname{tr} \Gamma^{\mu}(g) \operatorname{tr} \Gamma^{\nu}(g)=\chi^{\mu}(g) \chi^{\nu}(g) .
$$

3. Even for irreducible Γ^{μ} and Γ^{ν} the product representation is in general reducible,

$$
\Gamma^{\mu} \otimes \Gamma^{\nu}=\bigoplus_{\lambda} a_{\lambda} \Gamma^{\lambda} \quad \text { with } \quad d_{\mu} d_{\nu}=\sum_{\lambda} a_{\lambda} d_{\lambda} .
$$

According to character orthogonality the multiplicities are

$$
a_{\lambda}=\frac{1}{|G|} \sum_{c} n_{c} \overline{\chi_{c}^{\lambda}} \chi_{c}^{\mu} \chi_{c}^{\nu} .
$$

Example: $\mathbb{Z}_{2} \cong\{e, P\}$ has two one-dimensional irreps. Character table:

$$
\begin{array}{c|cc}
& e & P \\
\hline \chi^{1}=\Gamma^{1} & 1 & 1 \\
\chi^{2}=\Gamma^{2} & 1 & -1
\end{array}
$$

Construct the regular rep R.
Reduce $\Gamma=R \otimes R$ to a direct sum of irreps.

Clebsch-Gordan coefficients. In our live session we will go through some awkward looking but frequently used notation in the context of the basis change from a product basis to basis in which subsets of the basis vectors span irreducible subspaces.

Recap: Tensor products

Let U and V be vector spaces with bases $\left\{u_{i}\right\}$ and $\left\{v_{j}\right\}$, respectively, and let $W=U \otimes V$ with basis $\left\{w_{k}\right\}$, where $w_{k}=u_{i} \otimes v_{j}$. Further let $A: U \rightarrow U$ and $B: V \rightarrow V$ be linear maps. Then $D:=A \otimes B$ is the linear map $W \rightarrow W$ with

$$
D w_{k}=A u_{i} \otimes B v_{j}, \quad \text { where } k=(i, j),
$$

by linearity extended to arbitrary $w \in W$, i.e. for $w=\sum_{k} \alpha_{k} w_{k}=\sum_{i j} \alpha_{i j} u_{i} \otimes v_{j}$ we have

$$
D w=\sum_{i, j} \alpha_{i j} A u_{i} \otimes B v_{j}
$$

In matrix components:

$$
\begin{aligned}
A u_{i} & =\sum_{i^{\prime}} u_{i^{\prime}} A_{i^{\prime} i}, \quad B v_{j}=\sum_{j^{\prime}} v_{j^{\prime}} B_{j^{\prime} j} \quad \text { and } \\
D w_{k} & =\sum_{k^{\prime}} w_{k^{\prime}} D_{k^{\prime} k}=\sum_{i^{\prime} j^{\prime}}\left(u_{i^{\prime}} \otimes v_{j}\right) A_{i^{\prime} i} B_{j^{\prime} j}
\end{aligned}
$$

i.e. $D_{k^{\prime} k} \equiv D_{i^{\prime} j^{\prime} i j}=A_{i^{\prime} i} B_{j^{\prime} j}$. If everything is finite-dimensional then

$$
\operatorname{tr} D=\sum_{k} D_{k k}=\sum_{i, j} A_{i i} B_{j j}=\operatorname{tr} A \cdot \operatorname{tr} B=\operatorname{tr}(A \otimes B) .
$$

Scalar products on U and V induce a scalar product on W by

$$
\left\langle w_{k} \mid w_{k^{\prime}}\right\rangle=\left\langle u_{i} \mid u_{i^{\prime}}\right\rangle_{U}\left\langle v_{j} \mid v_{j^{\prime}}\right\rangle_{V},
$$

again extended by (sesqui-)linearity.
If $\left\{u_{i}\right\}$ and $\left\{v_{j}\right\}$ are ONB with respect to $\langle\mid\rangle_{U}$ and $\langle\mid\rangle_{V}$, then $\left\{w_{k}\right\}$ is also orthonormal,

$$
\left\langle w_{k} \mid w_{k^{\prime}}\right\rangle=\delta_{i i^{\prime}} \delta_{j j^{\prime}}=\delta_{k k^{\prime}} .
$$

