Universität Tübingen, Mathematisches Institut Dr. Stefan Keppeler

Groups and Representations

Instruction 8 for the preparation of the lecture on 17 May 2021

3 Applications in quantum mechanics

3.1 Expansion in irreducible basis functions and selections rules Setting:

 L^2 -spaces & unitary operators https://youtu.be/5yJbnMbWZK4 (2min) (1)

Lemma 8. Let G be a (finite) group of unitary linear operators $V \to V$, $A \in G^{1}$, and let $\psi_1^{\nu}, \ldots, \psi_{d_{\nu}}^{\nu}$ be functions that transform in the unitary irreducible representation Γ^{ν} (with $\dim(\Gamma^{\nu}) = d_{\nu}, \ i.e.$

$$A\psi^{\nu}_{\alpha} = \sum_{\beta=1}^{d_{\nu}} \psi^{\nu}_{\beta} \, \Gamma^{\nu}(A)_{\beta\alpha} \, .$$

Then $\exists C_{\nu} \in \mathbb{C}$ such that $\langle \psi_{\alpha}^{\nu} | \psi_{\beta}^{\mu} \rangle = C_{\nu} \, \delta_{\nu\mu} \, \delta_{\alpha\beta}.$

Proof:

$$https://youtu.be/Ru30m0wi0TM (7min)$$
(2)

Remarks:

Have you heard the term *selection rule* before? If not, never mind. If yes, in which context? Let's speak about it in the live session.

3.2 Invariance of the Hamiltonian and degeneracies

A special role is played by the Hamiltonian $H: V \to V$ (a linear self-adjoint operator) of a quantum mechanical system. In particular, its eigenvalues are the possible energy levels in which we can find the system.

Let H be the Hamiltonian of a quantum mechanical system and let A be a unitary operator. If

$$AH = HA$$
,

we say that A commutes with the Hamiltonian or that A leaves H invariant.

The set of all symmetry operations (realised by unitary operators) that leave H invariant forms a group G, the symmetry group of H. Why is this a group?

Every eigenspace of H, say $\{\psi \in V : H\psi = E\psi\}$, carries a representation of the symmetry group G:

> (4)https://youtu.be/t0_HAXTVgmg (2min)

¹Alternatively, view the operators A as unitary representation of a group G on V.

This representation can, in principle, be reducible or irreducible; typically it is irreducible:

 \blacktriangleright All states transforming in the same irrep of G must have the same energy:

$$https://youtu.be/hdODKxaR4Ec (3 min)$$
(5)

► States transforming in different irreps can have different energies – at least, symmetry does not force them to have the same energy:

$$\texttt{https://youtu.be/er1ZQ3a8_38} (2\min) \tag{6}$$

If states transforming in different irreps still have the same energy, we speak about "accidental degeneracy". Possible reasons:

- \blacktriangleright "Fine-tuning" of one or several parameters in H (unlikely).
- ▶ We haven't correctly identified the full symmetry group, i.e. we have overlooked some symmetry.

Conclusions:

- Degenerate states to a given energy typically transform in an irrep of the symmetry group of H, i.e. they can be classified by irreps.
- \blacktriangleright number of degenerate states = dimension of the irrep

Example (& outlook): Hydrogen atom