Universität Tübingen, Mathematisches Institut Dr. Stefan Keppeler

Sommersemester 2021

Groups and Representations

Instruction 10 for the preparation of the lecture on 31 May 2021

4.1 Projection operators onto irreducible bases (cont.)

Theorem 9. (Properties of P_{ik}^{μ}) With the above definitions we have:

- (i) For fixed $\psi \in V$ and for fixed μ and j the d_{μ} vectors $P_{jk}^{\mu}\psi$, $k = 1, \ldots, d_{\mu}$, either all vanish or they transform in irrep Γ^{μ} , i.e. $U(g)P_{jk}^{\mu} = \sum_{\ell} P_{j\ell}^{\mu} \Gamma^{\nu}(g)_{\ell k}$.
- (ii) $P^{\mu}_{ji}P^{\nu}_{\ell k} = \delta_{\mu\nu}\delta_{jk}P^{\mu}_{\ell i}$.
- (iii) $P_i^{\mu} = P_{jj}^{\mu}$ is a projection operator.
- (iv) $P^{\mu} = \sum_{j} P_{j}^{\mu}$ is a projection operator onto the invariant subspace U^{μ} containing all vectors transforming in the irreducible representation Γ^{μ} .
- (v) $\sum_{\mu} P^{\mu} = 1$ if V completely reducible (here always assumed).

(vi)
$$U(g) = \sum_{\mu} \sum_{j,k} \Gamma^{\mu}(g)_{kj} P_{jk}^{\mu}$$
 (inversion of definition).

Proof:

- (i) & (ii) https://youtu.be/Xenr0VXpvcM (4 min) (1)
- (iii)-(v) https://youtu.be/050MW7Cao8w (2min) (2)
- (vi) https://youtu.be/M-4KmZHsMOw (2min) (3)

Examples:

1. Reduction of span(ϕ_1, ϕ_2, ϕ_3) from Section 2.4.1 (invariant under $D_3 \cong S_3$). S_3 has two 1-dimensional and one 2-dimensional irrep ($\Gamma^1, \Gamma^2, \Gamma^3$).

generalised projection operators https://youtu.be/laouieOnL4A (6 min) (4)

Apply to some vector, say ϕ_1 :

$$\mu = 1,2 \qquad \text{https://youtu.be/nMMHx7_zs_w} (3\min) \qquad (5)$$

$$\mu = 3$$
 https://youtu.be/8sDomkziGvA (5 min) (6)

2. Reducing a product representation:

4.2 Irreducible operators and the Wigner-Eckart Theorem

Definition: (irreducible operators)

Let G be a group, $U : G \to \operatorname{GL}(V)$ a representation, and Γ^{μ} a unitary irreducible representation with dim $\Gamma^{\mu} = d_{\mu}$. A set of linear operators $O_i^{\mu} : V \to V$, $i = 1, \ldots, d_{\mu}$, which transform under G as follows,

$$U(g) O_i^{\mu} U(g)^{-1} = \sum_{j=1}^{d_{\mu}} O_j^{\mu} \Gamma^{\mu}(g)_{ji},$$

is called a set of irreducible operators corresponding to irrep Γ^{μ} .

(The O_i^{μ} are also called irreducible tensors or irreducible tensor operators).

Remarks:

1. The definition makes sense:

- 2. Special case: If Γ^{μ} is the trivial representation then the operator O^{μ} (no index *i*, since $d_{\mu} = 1$) commutes with $U(g) \forall g \in G$, cf. Section 3.2.
- 3. If O_i^{μ} , $i = 1, \ldots, d_{\mu}$, are irreducible operators and if $|e_j^{\nu}\rangle$, $j = 1, \ldots, d_{\nu}$, are irreducible basis vectors, then the vectors $O_i^{\mu}|e_j^{\nu}\rangle$ transform in the product rep $\Gamma^{\mu\otimes\nu}$. Show this!

We can reduce this product representation (cf. Section 2.8) and expand the vectors $O_i^{\mu} |e_i^{\nu}\rangle$ in the irreducible basis $\{|w_{\alpha\ell}^{\lambda}\rangle\}$,

$$O_i^{\mu} | e_j^{\nu} \rangle = \sum_{\alpha \lambda \ell} | w_{\alpha \ell}^{\lambda} \rangle \langle \alpha, \lambda, \ell(\mu, \nu) i, j \rangle \,. \tag{*}$$

This leads to...

Theorem 10. (Wigner-Eckart)

Let O_i^{μ} be irreducible operators and let $|e_i^{\nu}\rangle$ be irreducible vectors. Then

$$\langle e_{\ell}^{\lambda} | O_i^{\mu} | e_j^{\nu} \rangle = \sum_{\alpha} \langle \alpha, \lambda, \ell(\mu, \nu) i, j \rangle \, \langle \lambda \| O^{\mu} \| \nu \rangle_{\alpha}$$

with the so-called reduced matrix element (which isn't a matrix element...)

$$\langle \lambda \| O^{\mu} \| \nu \rangle_{\alpha} = \frac{1}{d_{\lambda}} \sum_{k} \langle e_{k}^{\lambda} | w_{\alpha k}^{\lambda} \rangle \,.$$

Can you prove this, using (*) and the proof of Lemma 8?