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4.1 Projection operators onto irreducible bases (cont.)

Theorem 9. (Properties of P µ
jk) With the above de�nitions we have:

(i) For �xed ψ ∈ V and for �xed µ and j the dµ vectors P µ
jkψ, k = 1, . . . , dµ, either all

vanish or they transform in irrep Γµ, i.e. U(g)P µ
jk =

∑̀
P µ
j` Γν(g)`k.

(ii) P µ
jiP

ν
`k = δµνδjkP

µ
`i.

(iii) P µ
j = P µ

jj is a projection operator.

(iv) P µ =
∑

j P
µ
j is a projection operator onto the invariant subspace Uµ containing

all vectors transforming in the irreducible representation Γµ.

(v)
∑

µ P
µ = 1 if V completely reducible (here always assumed).

(vi) U(g) =
∑
µ

∑
j,k

Γµ(g)kjP
µ
jk (inversion of de�nition).

Proof:

(i) & (ii) https://youtu.be/Xenr0VXpvcM (4min) (1)

(iii)�(v) https://youtu.be/05OMW7Cao8w (2min) (2)

(vi) https://youtu.be/M-4KmZHsM0w (2min) (3)

Examples:

1. Reduction of span(φ1, φ2, φ3) from Section 2.4.1 (invariant under D3
∼= S3).

S3 has two 1-dimensional and one 2-dimensional irrep (Γ1,Γ2,Γ3).

generalised projection operators https://youtu.be/laouieOnL4A (6min) (4)

Apply to some vector, say φ1:

µ = 1, 2 https://youtu.be/nMMHx7_zs_w (3min) (5)

µ = 3 https://youtu.be/8sDomkziGvA (5min) (6)

2. Reducing a product representation:

https://youtu.be/79QuhXEDkGY (3min) (7)

https://youtu.be/Xenr0VXpvcM
https://youtu.be/05OMW7Cao8w
https://youtu.be/M-4KmZHsM0w
https://youtu.be/laouieOnL4A
https://youtu.be/nMMHx7_zs_w
https://youtu.be/8sDomkziGvA
https://youtu.be/79QuhXEDkGY


4.2 Irreducible operators and the Wigner-Eckart Theorem

De�nition: (irreducible operators)
Let G be a group, U : G → GL(V ) a representation, and Γµ a unitary irreducible
representation with dim Γµ = dµ. A set of linear operators Oµ

i : V → V , i = 1, . . . , dµ,
which transform under G as follows,

U(g)Oµ
i U(g)−1 =

dµ∑
j=1

Oµ
j Γµ(g)ji ,

is called a set of irreducible operators corresponding to irrep Γµ.
(The Oµ

i are also called irreducible tensors or irreducible tensor operators).

Remarks:

1. The de�nition makes sense:

https://youtu.be/KEr1n5iC394 (4min) (8)

2. Special case: If Γµ is the trivial representation then the operator Oµ (no index i,
since dµ = 1) commutes with U(g) ∀ g ∈ G, cf. Section 3.2.

3. IfOµ
i , i = 1, . . . , dµ, are irreducible operators and if |eνj 〉, j = 1, . . . , dν , are irreducible

basis vectors, then the vectors Oµ
i |eνj 〉 transform in the product rep Γµ⊗ν .

Show this!
We can reduce this product representation (cf. Section 2.8) and expand the vectors
Oµ
i |eνj 〉 in the irreducible basis {|wλα`〉},

Oµ
i |eνj 〉 =

∑
αλ`

|wλα`〉〈α, λ, `(µ, ν)i, j〉 . (∗)

This leads to. . .

Theorem 10. (Wigner-Eckart)
Let Oµ

i be irreducible operators and let |eνj 〉 be irreducible vectors. Then

〈eλ` |O
µ
i |eνj 〉 =

∑
α

〈α, λ, `(µ, ν)i, j〉 〈λ‖Oµ‖ν〉α

with the so-called reduced matrix element (which isn't a matrix element. . . )

〈λ‖Oµ‖ν〉α =
1

dλ

∑
k

〈eλk |wλαk〉 .

Can you prove this, using (∗) and the proof of Lemma 8?

https://youtu.be/KEr1n5iC394

