Groups and Representations

Instruction 11 for the preparation of the lecture on 2 June 2021

4.2 Irreducible operators and the Wigner-Eckart Theorem (cont.) Remarks (on Wigner-Eckart):
 https://youtu.be/DnBKfkmI4R8 (4 min)

Example: time-dependent perturbation theory for dipole radiation
https://youtu.be/iTP7E2z54F8 (8 min)

4.3 Left ideals and idempotents

The generalised projection operators allow us to decompose reducible reps into sums of irreps. To this end we already have to know the irreps.
Question: How to construct the irreps?
Idea: Reduce the regular rep (see Instruction 7), as it contains all irreps Γ^{μ}
Recall: Carrier space is the group algebra $\mathcal{A}(G)=\operatorname{span}\left(g_{1}, \ldots, g_{|G|}\right)$.
Definition: (left ideal, minimal left ideal)
A subspace $L \subseteq \mathcal{A}(G)$ that is invariant under left multiplication is called left ideal, i.e.

$$
r \in L \text { and } q \in \mathcal{A}(G) \quad \Rightarrow \quad q r \in L .
$$

A left ideal L is called minimal if it does not contain any non-trivial left ideal $K \subset L$.

Remarks:

1. One similarly defines right ideals and two-sided ideals. (We use only left ideals.)
2. L is a left ideal $\Leftrightarrow L$ is an invariant subspace.
3. L is a minimal left ideal $\Leftrightarrow L$ is an irreducible invariant subspace.

Show remarks 2 and 3.

Denote by P_{α}^{μ} the projection operator onto the minimal left ideal L_{α}^{μ}, i.e. $P_{\alpha}^{\mu} \mathcal{A}(G)=L_{\alpha}^{\mu}$. As before μ labels the non-equivalent irreps, and $\alpha=1, \ldots, d_{\mu}$. Demand the following...
... properties of P_{α}^{μ} :
(i) $P_{\alpha}^{\mu} r \in L_{\alpha}^{\mu} \quad \forall r \in \mathcal{A}(G)$.
(ii) If $q \in L_{\alpha}^{\mu}$ then $P_{\alpha}^{\mu} q=q$.
(iii) $P_{\alpha}^{\mu} P_{\beta}^{\nu}=\delta_{\mu \nu} \delta_{\alpha \beta} P_{\alpha}^{\mu}$.

It then follows that
(iv) $P_{\alpha}^{\mu} q=q P_{\alpha}^{\mu} \quad \forall q \in \mathcal{A}(G)$.
Proof: https://youtu.be/ebET50quvPk (3 min)

We define $L^{\mu}=\bigoplus_{\alpha} L_{\alpha}^{\mu}$ and first construct the projection operator P^{μ} onto L^{μ} :
https://youtu.be/YLY-j-LNkH8 (4 min)

Lemma 11. P^{μ} is given by right multiplication with e_{μ}, i.e. $P^{\mu} q=q e_{\mu} \forall q \in \mathcal{A}(G)$.

Remarks:

1. P^{μ} is linear.
2. $e_{\mu} e_{\nu}=\delta_{\mu \nu} e_{\mu}-$ cf. property (iii). Show this.
3. With $e=\sum_{\mu, \alpha} e_{\alpha}^{\mu}$ this also works for projections to minimal left ideals, $P_{\alpha}^{\mu} q=q e_{\alpha}^{\mu}$.

Definition: (idempotents)
An element $e_{\mu} \in \mathcal{A}(G)$ that satisfies $e_{\mu}^{2}=e_{\mu}$ is called (an) idempotent. If $e_{\mu}^{2}=\xi_{\mu} e_{\mu}$ for some non-zero $\xi_{\mu} \in \mathbb{C}$ then we call e_{μ} essentially idempotent.

Remarks:

1. We say the idempotent e_{μ} generates the left ideal L^{μ}, i.e. $L^{\mu}=\left\{q e_{\mu}: q \in \mathcal{A}(G)\right\}$.
2. An idempotent is called primitive, if it generates a minimal left ideal. Otherwise it can be written as a sum $e_{1}+e_{2}$ of two non-zero idempotents with $e_{1} e_{2}=0=e_{2} e_{1}$.

Theorem 12.

The idempotent e_{μ} is primitive. \Leftrightarrow For every $q \in \mathcal{A}(G) \exists \lambda_{q} \in \mathbb{C}$ s.t. $e_{\mu} q e_{\mu}=\lambda_{q} e_{\mu}$.

Proof:

https://youtu.be/jrqF23SpENg (10 min)

Theorem 13. The left ideals generated by two primitive idempotents, e_{1} and e_{2}, carry equivalent irreps Γ^{1} and Γ^{2} iff $e_{1} q e_{2} \neq 0$ for at least one $q \in \mathcal{A}(G)$.

Proof:
https://youtu.be/Wy3NS9IE_oY (9 min)

Example: The primitive idempotent

$$
e_{1}=\frac{1}{|G|} \sum_{j=1}^{|G|} g_{j}
$$

generates the one-dimensional left ideal L^{1}, which carries the trivial representation.

Show this!

