Universität Tübingen, Mathematisches Institut Dr. Stefan Keppeler

Groups and Representations

Instruction 12 for the preparation of the lecture on 7 June 2021

4.3.1 Dimensions and characters of the irreducible representations

Theorem 14. Let G be a group with group algebra $\mathcal{A}(G)$, and let

$$e_{\mu} = \sum_{g \in G} a_g g$$

be a primitive idempotent with corresponding left ideal $L^{\mu} = \mathcal{A}(G)e_{\mu}$, carrying irrep Γ^{μ} with dim $\Gamma^{\mu} = d_{\mu}$. Then $\forall h \in G$

$$\chi^{\mu}(h) = \operatorname{tr} \Gamma^{\mu}(h) = \frac{|G|}{n_c} \sum_{g \in c} \overline{a_g}$$

where c is the conjugacy class of h with n_c elements.

Proof:

https://youtu.be/iSiwLsOS8w8 (12min)(1)

5 Representations of the symmetric group and Young diagrams

5.1 One-dimensional irreps and associate representations of S_n

The alternating group A_n is the group of even permutations of $\{1, 2, ..., n\}$ (i.e. each element is the product of an even number of transpositions). A_n is a normal subgroup of S_n , with quotient group $S_n/A_n \cong \mathbb{Z}_2$.

 \Rightarrow S_n has two one-dimensional representations, induced by the by the representations of \mathbb{Z}_2 (cf. Problems 8, 14 & 15):

$$\Gamma^{\rm s}(p) = 1 \quad \forall \ p \in S_n \ (\text{trivial representation}) \text{ and}$$

$$\Gamma^{\rm a}(p) = \operatorname{sgn}(p) = \begin{cases} 1 & \text{for } p \text{ even} \\ -1 & \text{for } p \text{ odd} \end{cases}.$$

 $\operatorname{sgn}(p)$ is called sign or parity of the permutation p.

Later we will see: There are no other one-dimensional representations of S_n .

Lemma 15. The symmetriser $s = \sum_{p \in S_n} p$ and the anti-symmetriser $a = \sum_{p \in S_n} \operatorname{sgn}(p)p$ are essentially idempotent and primitive.

Prove this!

Show the non-equivalence of these two irreps using Theorem 13.

Sommersemester 2021

Definition: (associate representations)

For a representation Γ^{λ} of S_n with dimension d_{λ} , we call Γ^{λ} and $\widetilde{\Gamma^{\lambda}} = \Gamma^{\lambda} \otimes \Gamma^{a}$ associate representations.

Remarks:

- 1. $\Gamma^{\rm s}$ and $\Gamma^{\rm a}$ are associate to each other.
- 2. dim $(\widetilde{\Gamma^{\lambda}}) = d_{\lambda}$
- 3. $\widetilde{\Gamma^{\lambda}}$ is irreducible $\Leftrightarrow \Gamma^{\lambda}$ is irreducible. Why? Recall the irreducibility criterion from Instruction 6.
- 4. If $\chi^{\lambda}(p) = 0$ for all odd p, then $\widetilde{\Gamma^{\lambda}}$ is equivalent to Γ^{λ} (why?), and Γ^{λ} is called *self-associate*. Otherwise they are non-equivalent.

Theorem 16. Let Γ^{λ} and Γ^{μ} be irreps of S_n . Then

- (i) $\Gamma^{\lambda} \otimes \Gamma^{\mu}$ contains Γ^{s} exactly once (not at all), if Γ^{λ} and Γ^{μ} are equivalent (non-equivalent).
- (ii) $\Gamma^{\lambda} \otimes \Gamma^{\mu}$ contains Γ^{a} exactly once (not at all), if Γ^{λ} and Γ^{μ} are associate (not associate).

Proof:

https://youtu.be/OqKaJx422ng (7min)(3)

5.1.1 Some more birdtracks

In birdtrack notation we denote symmetrisers and anti-symmetrisers by open and solid bars, respectively, i.e.

$$\frac{1}{n!}s = \frac{1}{n!}\sum_{p\in S_n} p = \boxed{\frac{1}{n!}} \quad \text{and} \quad \frac{1}{n!}a = \frac{1}{n!}\sum_{p\in S_n} \operatorname{sgn}(p) p = \boxed{\frac{1}{n!}} \quad .$$

Note that we include a factor of $\frac{1}{n!}$ in the definition of bars over n lines. For instance,

$$= \frac{1}{2} (\underline{-} + \mathbf{i}) \text{ and}$$

$$= \frac{1}{3!} (\underline{-} - \mathbf{i} - \mathbf{i} + \mathbf{i} + \mathbf{i}).$$
(4)

Notice that in birdtrack notation the sign of a permutation, $(-1)^K$, is determined by the number K of line crossings; if more than two lines cross in a point, one should slightly perturb the diagram before counting, e.g. $\swarrow \rightsquigarrow \swarrow (K=3)$.

Expand \blacksquare and \blacksquare as in (4).

We also use the corresponding notation for partial (anti-)symmetrisation over a subset of lines, e.g.

$$= \frac{1}{2} \left(= + \right) \quad \text{or}$$

$$= \frac{1}{2} \left(= - \right) = \frac{1}{2} \left(= - \right).$$

It follows directly from the definition of S and A that when intertwining any two lines S remains invariant and A changes by a factor of (-1), i.e.

Explain why this implies that whenever two (or more) lines connect a symmetriser to an anti-symmetrizer the whole expression vanishes, e.g.

$$= 0.$$
 (5)

Symmetrisers and anti-symmetrisers can be built recursively. To this end notice that on the r.h.s. of

$$\boxed{\vdots} \boxed{\vdots} = \frac{1}{n} \left(\boxed{\vdots} \boxed{\vdots} + \boxed{\vdots} + \dots + \boxed{\vdots} \boxed{\vdots} \right)$$

we have sorted the terms according to where the last line is mapped – to the *n*th, to the (n-1)th, ..., to the first line line. Multiplying with $\underline{ \begin{array}{c} \\ \\ \\ \\ \end{array}}$ from the left and disentangling lines we obtain the compact relation

$$\underbrace{\vdots}_{i} = \frac{1}{n} \left(\underbrace{\vdots}_{i} + (n-1) \underbrace{\vdots}_{i} \right). \tag{6}$$

Derive the corresponding recursion relation for anti-symmetrisers.