Groups and Representations

Instruction 12 for the preparation of the lecture on 7 June 2021

4.3.1 Dimensions and characters of the irreducible representations

Theorem 14. Let G be a group with group algebra $\mathcal{A}(G)$, and let

$$
e_{\mu}=\sum_{g \in G} a_{g} g
$$

be a primitive idempotent with corresponding left ideal $L^{\mu}=\mathcal{A}(G) e_{\mu}$, carrying irrep Γ^{μ} with $\operatorname{dim} \Gamma^{\mu}=d_{\mu}$. Then $\forall h \in G$

$$
\chi^{\mu}(h)=\operatorname{tr} \Gamma^{\mu}(h)=\frac{|G|}{n_{c}} \sum_{g \in c} \overline{a_{g}}
$$

where c is the conjugacy class of h with n_{c} elements.

Proof:

https://youtu.be/iSiwLs0S8w8 (12 min)

5 Representations of the symmetric group and Young diagrams

5.1 One-dimensional irreps and associate representations of $\boldsymbol{S}_{\boldsymbol{n}}$

The alternating group A_{n} is the group of even permutations of $\{1,2, \ldots, n\}$ (i.e. each element is the product of an even number of transpositions). A_{n} is a normal subgroup of S_{n}, with quotient group $S_{n} / A_{n} \cong \mathbb{Z}_{2}$.
$\Rightarrow S_{n}$ has two one-dimensional representations, induced by the by the representations of \mathbb{Z}_{2} (cf. Problems 8, 14 \& 15):

$$
\begin{aligned}
\Gamma^{\mathrm{s}}(p) & =1 \quad \forall p \in S_{n}(\text { trivial representation }) \text { and } \\
\Gamma^{\mathrm{a}}(p) & =\operatorname{sgn}(p)
\end{aligned}=\left\{\begin{array}{cc}
1 & \text { for } p \text { even } \\
-1 & \text { for } p \text { odd }
\end{array} .\right.
$$

$\operatorname{sgn}(p)$ is called sign or parity of the permutation p.
Later we will see: There are no other one-dimensional representations of S_{n}.
Lemma 15. The symmetriser $s=\sum_{p \in S_{n}} p$ and the anti-symmetriser $a=\sum_{p \in S_{n}} \operatorname{sgn}(p) p$ are essentially idempotent and primitive.

Prove this!

Corresponding irreps: https://youtu.be/syAbXy1vExo (4 min)

Show the non-equivalence of these two irreps using Theorem 13.

Definition: (associate representations)
For a representation Γ^{λ} of S_{n} with dimension d_{λ}, we call Γ^{λ} and $\widetilde{\Gamma^{\lambda}}=\Gamma^{\lambda} \otimes \Gamma^{\text {a }}$ associate representations.

Remarks:

1. Γ^{s} and Γ^{a} are associate to each other.
2. $\operatorname{dim}\left(\widetilde{\Gamma^{\lambda}}\right)=d_{\lambda}$
3. $\widetilde{\Gamma^{\lambda}}$ is irreducible $\Leftrightarrow \Gamma^{\lambda}$ is irreducible.

Why? Recall the irreducibility criterion from Instruction 6.
4. If $\chi^{\lambda}(p)=0$ for all odd p, then $\widetilde{\Gamma^{\lambda}}$ is equivalent to Γ^{λ} (why?), and Γ^{λ} is called self-associate. Otherwise they are non-equivalent.

Theorem 16. Let Γ^{λ} and Γ^{μ} be irreps of S_{n}. Then
(i) $\Gamma^{\lambda} \otimes \Gamma^{\mu}$ contains Γ^{s} exactly once ($n o t$ at all), if Γ^{λ} and Γ^{μ} are equivalent (non-equivalent).
(ii) $\Gamma^{\lambda} \otimes \Gamma^{\mu}$ contains Γ^{a} exactly once (not at all), if Γ^{λ} and Γ^{μ} are associate (not associate).

Proof:
https://youtu.be/0qKaJx422ng (7min)

5.1.1 Some more birdtracks

In birdtrack notation we denote symmetrisers and anti-symmetrisers by open and solid bars, respectively, i.e.

$$
\frac{1}{n!} s=\frac{1}{n!} \sum_{p \in S_{n}} p=\begin{aligned}
& \square \square
\end{aligned} \quad \text { and } \quad \frac{1}{n!} a=\frac{1}{n!} \sum_{p \in S_{n}} \operatorname{sgn}(p) p=\frac{\square}{\square} .
$$

Note that we include a factor of $\frac{1}{n!}$ in the definition of bars over n lines. For instance,

$$
\begin{align*}
& \square \square=\frac{1}{2}(\square+\infty) \text { and } \\
& \square=\frac{1}{3!}(\bar{\square}-\bar{x}-\bar{x}-x+x) \tag{4}
\end{align*}
$$

Notice that in birdtrack notation the sign of a permutation, $(-1)^{K}$, is determined by the number K of line crossings; if more than two lines cross in a point, one should slightly perturb the diagram before counting, e.g. $\nsucc \rightsquigarrow \neq(K=3)$.
Expand च— and च— as in (4).

We also use the corresponding notation for partial (anti-)symmetrisation over a subset of lines, e.g.

$$
\begin{aligned}
& \bar{\square}=\frac{1}{2}(\bar{\square}+\cdots) \text { or } \\
& \bar{\infty}=\frac{1}{2}(\square)=\frac{1}{2}(\square-\infty) .
\end{aligned}
$$

It follows directly from the definition of S and A that when intertwining any two lines S remains invariant and A changes by a factor of (-1), i.e.

Explain why this implies that whenever two (or more) lines connect a symmetriser to an anti-symmetrizer the whole expression vanishes, e.g.

Symmetrisers and anti-symmetrisers can be built recursively. To this end notice that on the r.h.s. of

$$
\bar{\square}\left[=\frac{1}{n}\left(\frac{\square}{\square}+\bar{\square}+\cdots+\underset{\square}{\square}+\ldots+\right.\right.
$$

we have sorted the terms according to where the last line is mapped - to the n th, to the $(n-1)$ th, \ldots, to the first line line. Multiplying with from the left and disentangling lines we obtain the compact relation

$$
\begin{equation*}
\square\left[\square=\frac{1}{n}\left(\frac{\square}{\square-\square}+(n-1) \underset{\square}{\square}\right) .\right. \tag{6}
\end{equation*}
$$

Derive the corresponding recursion relation for anti-symmetrisers.

