Universität Tübingen, Mathematisches Institut Dr. Stefan Keppeler

Groups and Representations

Instruction 13 for the preparation of the lecture on 9 June 2021

5.2 Young diagrams and Young tableaux

Definition: (partition, Young diagram)

A partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ of a natural number *n* is a (finite) sequence of positive integers with

$$\sum_{i=1}^r \lambda_i = n \quad \text{and} \quad \lambda_i \ge \lambda_{i+1} \,.$$

Let λ and μ be two partitions for the same n.

- (i) We say that λ and μ are equal, if $\lambda_i = \mu_i \ \forall i$.
- (ii) We say $\lambda > \mu$ if the first non-vanishing term of the sequence $\lambda_i \mu_i$ is positive.

Graphically, a partition can be represented by a Young diagram:

Each partition corresponds to a conjugacy class of S_n and vice versa:

Since the number of Young diagrams with n boxes is equal to the number of conjugacy classes of S_n , it is also equal to the number of non-equivalent irreps of S_n .

Further definitions: Young tableau, normal Young tableau, and standard Young tableau:

$$https://youtu.be/3oOSaYheyRg (3 min)$$
(3)

The normal Young tableau corresponding to partition λ we denote by Θ_{λ} . We obtain an arbitrary tableau from Θ_{λ} by a permutation p of the numbers in the boxes:

$$\Theta^p_{\lambda} = p\Theta_{\lambda}$$
.

This implies $q\Theta_{\lambda}^{p} = \Theta_{\lambda}^{qp}$. Example:

$$\Theta_{\boxplus}^{(23)} = \boxed{\begin{array}{c}1 & 3\\2 & 4\end{array}} \qquad \text{since} \qquad \Theta_{(2,2)} = \Theta_{\boxplus} = \boxed{\begin{array}{c}1 & 2\\3 & 4\end{array}}$$

Write down all standard tableaux for S_4 .

Sommersemester 2021

5.3 Young operators

Definitions: Let Θ_{λ}^{p} be a Young tableau.

A horizontal permutation h_{λ}^{p} permutes only numbers within rows of Θ_{λ}^{p} . A vertical permutation v_{λ}^{p} permutes only numbers within columns of Θ_{λ}^{p} . Furthermore, we define

$$\begin{array}{ll} \text{the } (row\text{-})symmetriser & s_{\lambda}^{p} = \sum_{\{h_{\lambda}^{p}\}} h_{\lambda}^{p} \,, \\ \text{the } (column\text{-})anti\text{-}symmetriser & a_{\lambda}^{p} = \sum_{\{v_{\lambda}^{p}\}} \operatorname{sgn}(v_{\lambda}^{p}) \, v_{\lambda}^{p} \quad \text{and} \\ \text{the } Young \ operator & \\ \text{(or irreducible symmetriser)} & e_{\lambda}^{p} = s_{\lambda}^{p} \, a_{\lambda}^{p} = \sum_{\{h_{\lambda}^{p}\}} \sum_{\{v_{\lambda}^{p}\}} \operatorname{sgn}(v_{\lambda}^{p}) \, h_{\lambda}^{p} \, v_{\lambda}^{p} \,. \end{array}$$

Example: standard tableaux for S_3

Expressed in birdtracks:

$$https://youtu.be/F19019xUrdE (3 min)$$
(5)

Verify that e_{\square} is essentially idempotent. Try both, birdtracks and cycle notation.

Observations:

- 1. For each tableau Θ_{λ}^{p} the horizontal and the vertical permutations, $\{h_{\lambda}^{p}\}$ and $\{v_{\lambda}^{p}\}$, form subgroups of S_{n} , with $\{h_{\lambda}^{p}\} \cap \{v_{\lambda}^{p}\} = \{e\}$. We obtain the subgroups for Θ_{λ}^{p} from those for Θ_{λ} by conjugation with p, hence $e_{\lambda}^{p} = p e_{\lambda} p^{-1}$.
- 2. s_{λ}^{p} and a_{λ}^{p} are (total) symmetriser and anti-symmetriser of the corresponding subgroup, in the sense that

$$s_{\lambda}^{p}h_{\lambda}^{p} = h_{\lambda}^{p}s_{\lambda}^{p} = s_{\lambda}^{p}$$
 and $a_{\lambda}^{p}v_{\lambda}^{p} = v_{\lambda}^{p}a_{\lambda}^{p} = \operatorname{sgn}(v_{\lambda}^{p})a_{\lambda}^{p}$.

- 3. s_{λ}^{p} and a_{λ}^{p} are essentially idempotent, but in general not primitive. The e_{λ}^{p} are essentially idempotent and primitive (here for S_{3} , later for S_{n}). **Can you show** primitivity for e_{\Box} ?
- 4. $e_{\square} = s$ and $e_{\square} = a$ generate the two one-dimensional irreps of S_3 (cf. Section 5.1). e_{\square} generates a two-dimensional (minimal) left ideal of $\mathcal{A}(S_3)$:

 \Rightarrow The Young operators of the normal Young tableaux generate all irreps of S_3 .

5. **Determine** the (minimal) left ideal generated by $e_{\Pi}^{(23)}$.

6. Verify that $e = \frac{1}{6}e_{\Box\Box} + \frac{1}{3}e_{\Box} + \frac{1}{3}e_{\Box}^{(23)} + \frac{1}{6}e_{\Box}$ and conclude that the regular rep of S_3 is completely reduced by the Young operators of the standard Young tableaux.