Groups and Representations

Instruction 13 for the preparation of the lecture on 9 June 2021

5.2 Young diagrams and Young tableaux

Definition: (partition, Young diagram)
A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ of a natural number n is a (finite) sequence of positive integers with

$$
\sum_{i=1}^{r} \lambda_{i}=n \quad \text { and } \quad \lambda_{i} \geq \lambda_{i+1} .
$$

Let λ and μ be two partitions for the same n.
(i) We say that λ and μ are equal, if $\lambda_{i}=\mu_{i} \forall i$.
(ii) We say $\lambda>\mu$ if the first non-vanishing term of the sequence $\lambda_{i}-\mu_{i}$ is positive.

Graphically, a partition can be represented by a Young diagram:
https://youtu.be/zSsEYZqiCcM (4 min)

Each partition corresponds to a conjugacy class of S_{n} and vice versa:
https://youtu.be/JMiaRRXWxaU (2 min)

Since the number of Young diagrams with n boxes is equal to the number of conjugacy classes of S_{n}, it is also equal to the number of non-equivalent irreps of S_{n}.

Further definitions: Young tableau, normal Young tableau, and standard Young tableau:
https://youtu.be/3o0SaYheyRg (3 min)

The normal Young tableau corresponding to partition λ we denote by Θ_{λ}. We obtain an arbitrary tableau from Θ_{λ} by a permutation p of the numbers in the boxes:

$$
\Theta_{\lambda}^{p}=p \Theta_{\lambda} .
$$

This implies $q \Theta_{\lambda}^{p}=\Theta_{\lambda}^{q p}$. Example:

$$
\Theta_{\boxplus}^{(23)}=\begin{array}{|lll}
1 & 3 \\
\hline 2 & 4 \\
\hline
\end{array} \quad \text { since } \quad \Theta_{(2,2)}=\Theta_{\boxplus}=\begin{array}{|l|l|}
\hline 1 & 2 \\
3 & 4 \\
\hline
\end{array}
$$

Write down all standard tableaux for S_{4}.

5.3 Young operators

Definitions: Let Θ_{λ}^{p} be a Young tableau.
A horizontal permutation h_{λ}^{p} permutes only numbers within rows of Θ_{λ}^{p}. A vertical permutation v_{λ}^{p} permutes only numbers within columns of Θ_{λ}^{p}. Furthermore, we define

the (row-) symmetriser	$s_{\lambda}^{p}=\sum_{\left\{h_{\lambda}^{p}\right\}} h_{\lambda}^{p}$,
the (column-) anti-symmetriser	$a_{\lambda}^{p}=\sum_{\left\{v_{\lambda}^{p}\right\}} \operatorname{sgn}\left(v_{\lambda}^{p}\right) v_{\lambda}^{p}$ and
the Young operator (or irreducible symmetriser)	$e_{\lambda}^{p}=s_{\lambda}^{p} a_{\lambda}^{p}=\sum_{\left\{h_{\lambda}^{p}\right\}} \sum_{\left\{v_{\lambda}^{p}\right\}} \operatorname{sgn}\left(v_{\lambda}^{p}\right) h_{\lambda}^{p} v_{\lambda}^{p}$.

Example: standard tableaux for S_{3}
https://youtu.be/pq00q2mWiLc (6 min)

Expressed in birdtracks:
https://youtu.be/F19019xUrdE (3 min)

Verify that e_{\mp} is essentially idempotent. Try both, birdtracks and cycle notation.

Observations:

1. For each tableau Θ_{λ}^{p} the horizontal and the vertical permutations, $\left\{h_{\lambda}^{p}\right\}$ and $\left\{v_{\lambda}^{p}\right\}$, form subgroups of S_{n}, with $\left\{h_{\lambda}^{p}\right\} \cap\left\{v_{\lambda}^{p}\right\}=\{e\}$.
We obtain the subgroups for Θ_{λ}^{p} from those for Θ_{λ} by conjugation with p, hence $e_{\lambda}^{p}=p e_{\lambda} p^{-1}$.
2. s_{λ}^{p} and a_{λ}^{p} are (total) symmetriser and anti-symmetriser of the corresponding subgroup, in the sense that

$$
s_{\lambda}^{p} h_{\lambda}^{p}=h_{\lambda}^{p} s_{\lambda}^{p}=s_{\lambda}^{p} \quad \text { and } \quad a_{\lambda}^{p} v_{\lambda}^{p}=v_{\lambda}^{p} a_{\lambda}^{p}=\operatorname{sgn}\left(v_{\lambda}^{p}\right) a_{\lambda}^{p} .
$$

3. s_{λ}^{p} and a_{λ}^{p} are essentially idempotent, but in general not primitive.

The e_{λ}^{p} are essentially idempotent and primitive (here for S_{3}, later for S_{n}).
Can you show primitivity for e_{\square} ?
4. $e_{\square}=s$ and $e_{\text {日 }}=a$ generate the two one-dimensional irreps of S_{3} (cf. Section 5.1). e_{\boxplus} generates a two-dimensional (minimal) left ideal of $\mathcal{A}\left(S_{3}\right)$:
https://youtu.be/gX6Q7HzJzSE (6 min)
\Rightarrow The Young operators of the normal Young tableaux generate all irreps of S_{3}.
5. Determine the (minimal) left ideal generated by $e_{\square}^{(23)}$.
6. Verify that $e=\frac{1}{6} e_{\square \square}+\frac{1}{3} e_{\boxplus}+\frac{1}{3} e^{(23)}+\frac{1}{6} e_{\boxminus}$ and conclude that the regular rep of S_{3} is completely reduced by the Young operators of the standard Young tableaux.

