Universität Tübingen, Mathematisches Institut Dr. Stefan Keppeler

Groups and Representations

Instruction 14 for the preparation of the lecture on 14 June 2021

5.4 Irreducible representations of S_n

Theorem 17. Let $\lambda \neq \mu$ be partitions of $n \in \mathbb{N}$.

- (i) The Young operators e_{λ}^{p} are essentially idempotent, i.e. $(e_{\lambda}^{p})^{2} = \eta_{\lambda}e_{\lambda}^{p}$ with $\eta_{\lambda} \neq 0$,
- (ii) the $\frac{1}{\eta_{\lambda}}e^{p}_{\lambda}$ are primitive idempotents.
- (iii) The irreducible representations generated by e_{λ} and e_{μ} are not equivalent.
- (iv) The irreducible representations generated by e_{λ} and e_{λ}^{p} are equivalent.

Proof: First notice that no two terms in

$$e_{\lambda} = \sum_{\{h_{\lambda}\}} \sum_{\{v_{\lambda}\}} \operatorname{sgn}(v_{\lambda}) h_{\lambda} v_{\lambda}$$

are proportional to the same permutation. Why? In particular, $e_{\lambda} \neq 0$ and

$$e_{\lambda} = e + \text{terms proportional to } p \in S_n \setminus \{e\}.$$

In birdtracks we have:

https://youtu.be/0e-rjjzijJw (2min)

With this we can prove all four statements:

(iii) https://youtu.be/Kq_Z6mnpbXE (7min)

- (i) https://youtu.be/wEVE7g9w74Y (8min)
- (ii) & (iv) https://youtu.be/wrh1ILmhthE (4 min)

Remark: Unfortunately, for $n \geq 5$ the Young operators for the standard tableaux no longer satisfy $e_{\lambda}^{p}e_{\lambda}^{q} = 0 \quad \forall p \neq q$ (they still satisfy $e_{\lambda}^{p}e_{\mu}^{q} = 0 \quad \forall \lambda \neq \mu$, see (iii) above). However, the ideals generated by the Young operators of the standard tableaux are still linearly independent (see exercises) and

$$\mathcal{A}(S_n) = \bigoplus_{\substack{\text{standard}\\ \text{tableaux}}} \mathcal{A}(S_n) e_{\lambda}^p \,.$$

(without proof). In particular, this implies that dim $(\mathcal{A}(S_n)e_{\lambda}^p)$ is given by the number of standard tableaux for the partition λ .

5.5 Calculating characters using Young diagrams

The dimension d_{λ} of irrep Γ^{λ} is given by the number of standard tableaux for the partition λ . The *hook length formula* (which we won't prove) is very convenient:

$$d_{\lambda} = \frac{n!}{\prod_{i,j} h_{ij}} \,. \qquad \texttt{https://youtu.be/DxPI8Q0lh_Q} (3\,\min) \tag{2}$$

Determine the dimensions of all irreps of S_4 .

Before calculating characters we introduce the notion of a *skew hook*:

Here's a recipe (without proof) for calculating characters. Let c be a conjugacy class of S_n with disjoint cycles of lengths a_1, a_2, \ldots, a_q . Recursively determine the character χ_c^{λ} as follows:

- Choose any cycle of c, say with length a_i .
- ▶ Denote by \bar{c} the class of S_{n-a_i} , obtained by removing the cycle a_i from c.
- ► For the Young diagram Θ_{λ} determine all skew hooks of length a_i and denote the Young diagram(s) of S_{n-a_i} , obtained by removing such a skew hook by $\Theta_{\bar{\lambda}}$. Then

$$\chi_c^{\lambda} = \sum_{\bar{\lambda}} \pm \chi_{\bar{c}}^{\bar{\lambda}}$$

with "+" for positive skew hooks and "-" for negative skew hooks.

- ▶ Iterate this procedure.
- ► If no box of the Young diagram remains then $\chi_{()}^{\lambda=0} = 1$. (Don't forget the sign of the last skew hook removed!)
- ▶ If there is no skew hook of length a_i then $\chi_c^{\lambda} = 0$.

Determine the characters of the irrep of S_3 corresponding to \square .

Explain how we recover the number of standard tableaux when recursively determining the character of the identity.