Groups and Representations

Instruction 14 for the preparation of the lecture on 14 June 2021

5.4 Irreducible representations of S_{n}

Theorem 17. Let $\lambda \neq \mu$ be partitions of $n \in \mathbb{N}$.
(i) The Young operators e_{λ}^{p} are essentially idempotent, i.e. $\left(e_{\lambda}^{p}\right)^{2}=\eta_{\lambda} e_{\lambda}^{p}$ with $\eta_{\lambda} \neq 0$,
(ii) the $\frac{1}{\eta_{\lambda}} e_{\lambda}^{p}$ are primitive idempotents.
(iii) The irreducible representations generated by e_{λ} and e_{μ} are not equivalent.
(iv) The irreducible representations generated by e_{λ} and e_{λ}^{p} are equivalent.

Proof: First notice that no two terms in

$$
e_{\lambda}=\sum_{\left\{h_{\lambda}\right\}} \sum_{\left\{v_{\lambda}\right\}} \operatorname{sgn}\left(v_{\lambda}\right) h_{\lambda} v_{\lambda}
$$

are proportional to the same permutation. Why? In particular, $e_{\lambda} \neq 0$ and

$$
e_{\lambda}=e+\text { terms proportional to } p \in S_{n} \backslash\{e\} .
$$

In birdtracks we have:

With this we can prove all four statements:
(iii) https://youtu.be/Kq_Z6mnpbXE (7min)
(i) https://youtu.be/wEVE7g9w74Y (8 min)
(ii) \& (iv) https://youtu.be/wrh1ILmhthE (4 min)

Remark: Unfortunately, for $n \geq 5$ the Young operators for the standard tableaux no longer satisfy $e_{\lambda}^{p} e_{\lambda}^{q}=0 \forall p \neq q$ (they still satisfy $e_{\lambda}^{p} e_{\mu}^{q}=0 \forall \lambda \neq \mu$, see (iii) above). However, the ideals generated by the Young operators of the standard tableaux are still linearly independent (see exercises) and

$$
\mathcal{A}\left(S_{n}\right)=\bigoplus_{\substack{\text { standard } \\ \left.\text { tableaux } \\ \theta_{\lambda}^{p}\right\}}} \mathcal{A}\left(S_{n}\right) e_{\lambda}^{p} .
$$

(without proof). In particular, this implies that $\operatorname{dim}\left(\mathcal{A}\left(S_{n}\right) e_{\lambda}^{p}\right)$ is given by the number of standard tableaux for the partition λ.

5.5 Calculating characters using Young diagrams

The dimension d_{λ} of irrep Γ^{λ} is given by the number of standard tableaux for the partition λ. The hook length formula (which we won't prove) is very convenient:

$$
\begin{equation*}
d_{\lambda}=\frac{n!}{\prod_{i, j} h_{i j}} . \quad \text { https://youtu.be/DxPI8QO1h_Q }(3 \mathrm{~min}) \tag{2}
\end{equation*}
$$

Determine the dimensions of all irreps of S_{4}.
Before calculating characters we introduce the notion of a skew hook:
https://youtu.be/E_ahyAWIhp0 (2 min)

Here's a recipe (without proof) for calculating characters. Let c be a conjugacy class of S_{n} with disjoint cycles of lengths $a_{1}, a_{2}, \ldots, a_{q}$. Recursively determine the character χ_{c}^{λ} as follows:

- Choose any cycle of c, say with length a_{i}.
- Denote by \bar{c} the class of $S_{n-a_{i}}$, obtained by removing the cycle a_{i} from c.
- For the Young diagram Θ_{λ} determine all skew hooks of length a_{i} and denote the Young diagram(s) of $S_{n-a_{i}}$, obtained by removing such a skew hook by $\Theta_{\bar{\lambda}}$. Then

$$
\chi_{c}^{\lambda}=\sum_{\bar{\lambda}} \pm \chi_{\bar{c}}^{\bar{\lambda}}
$$

with " + " for positive skew hooks and "-" for negative skew hooks.

- Iterate this procedure.
- If no box of the Young diagram remains then $\chi_{()}^{\bar{\lambda}=0}=1$. (Don't forget the sign of the last skew hook removed!)
- If there is no skew hook of length a_{i} then $\chi_{c}^{\lambda}=0$.
Example: https://youtu.be/XnSE5E6m6fg (7min)

Determine the characters of the irrep of S_{3} corresponding to \square.
Explain how we recover the number of standard tableaux when recursively determining the character of the identity.

