Universität Tübingen, Fachbereich Mathematik Dr. Stefan Keppeler

Sommersemester 2021

Groups and Representations

Instruction 18 for the preparation of the lecture on 28 June 2021

6.6 Invariant integration: Haar measure

When representing finite groups we often used the rearrangement lemma as follows

$$\sum_{g \in G} f(g) = \sum_{g \in G} f(hg) = \sum_{g \in G} f(gh) \qquad \forall h \in G.$$

For continuous groups we would like to replace $\sum_{g \in G} f(g)$ by an integral, say, $\int_G f(g) d\mu(g)$. To this end we need an invariant measure μ .

Theorem 18. (Haar measure)

Every compact topological group possesses a left- and right-invariant measure μ , called Haar measure; it is unique up to normalisation.

(in this generality without proof, but we will explicitly construct μ for compact Lie groups)

Remarks:

1. Invariance means $\mu(gA) = \mu(Ag) = \mu(A) \quad \forall g \in G \text{ and all Borel sets } A \subset G.$ Shorthand notation: $d\mu(gh) = d\mu(hg) = d\mu(g) \quad \forall h \in G.$ Why does this make sense?

2. For compact groups we will normalise such that $\operatorname{vol} G = \int_G \mathrm{d}\mu(g) = 1$.

3. Hence, e.g. for continuous functions,

$$\int_{G} f(g) d\mu(g) = \int_{G} f(hg) d\mu(g) = \int_{G} f(gh) d\mu(g) \quad \forall h \in G.$$

$$https://youtu.be/Nx-2sfc_2ro (2 \min)$$
(1)

4. Moreover,
$$\int_{G} f(g^{-1}) d\mu(g) = \int_{G} f(g) d\mu(g).$$

https://youtu.be/bRobQky1UQ4 (3 min) (2)

5. Existence implies uniqueness:

6. One also finds invariant measures under weaker conditions. For instance locally compact groups (like $GL(n, \mathbb{R})$ or the Lorentz group) possess left-invariant and right-invariant measures (unique up to normalisation) but in general the two measures are not identical.

6.6.1 Calculating the Haar measure for a Lie group

Parametrise the group elements using $n = \dim G$ parameters, i.e.¹ $g = g(x_1, \ldots, x_n)$. Then, locally,

$$\mathrm{d}\mu(g) = \varrho(x_1, \dots, x_n) \,\mathrm{d}^n x$$

with a suitable density $\rho(x)$ and Lebesgue measure $d^n x = dx_1 \dots dx_n$. Hence, under reparametrisation x = f(y) we have:

$$\varrho(x) d^{n}x = \varrho(f(y)) \underbrace{\left| \det\left(\frac{\partial f}{\partial y}(y)\right) \right|}_{\text{Jacobian}} d^{n}y =: \tilde{\varrho}(y) d^{n}y$$

We now construct ρ such that invariance holds.

To this end expand $(-i)g(x)^{-1}\frac{\partial g}{\partial x_j}(x)$ in a basis $\{X_k\}$ of the Lie algebra \mathfrak{g} ,

$$g(x)^{-1} \frac{\partial g}{\partial x_j}(x) = i \sum_k X_k A(x)_{kj}.$$
https://youtu.be/-8CiMiXZWOA (4 min)
$$(4)$$

Claim: The density $\rho(x) = |\det A(x)|$ defines a left-invariant measure. **Proof:**

(i) We first check the behaviour under a (local) change of coordinates x = f(y).

$$https://youtu.be/OXxGTO9iTF4 (6 min)$$
(5)

(ii) Given a parametrisation in a neighbourhood of g, near $\tilde{g} = hg$ we choose the parametrisation $\tilde{g}(x) = h g(x)$. Then $\tilde{\varrho} = \varrho$.

$$https://youtu.be/kGaGW0p4uvs (5min)$$
(6)

(iii) Any other parametrisation in a neighbourhood of \tilde{g} can be achieved by a further change of coordinates as in (i).

What about right-invariance?

Near $\tilde{g} = gh$ choose the parametrisation $\tilde{g}(x) = g(x)h$. Then

$$d\mu(gh) = |\det\varphi(h)| d\mu(g). \quad \texttt{https://youtu.be/Waks9edvVJY} (6\min)$$
(7)

The factor $|\det \varphi(h)|$ is called *modular function* of G. If $|\det \varphi(h)| = 1 \forall h \in G$, we say that G is unimodular, and the left-invariant measure is also right-invariant.

Compact Lie groups are unimodular.

Show this by studying $\int_G f(gh) d\mu(g)$ for a constant function.

Example: Construct the Haar measure of SO(2) using the parametrisation of Sec. 6.2.

¹Actually $g = \varphi^{-1}(x_1, \ldots, x_n)$ but here we prefer this shorthand notation.