Universität Tübingen, Fachbereich Mathematik Dr. Stefan Keppeler

Sommersemester 2021

Groups and Representations

Instruction 19 for the preparation of the lecture on 30 June 2021

6.7 Properties of compact Lie groups

Theorems 2 and 6 for representations of finite groups also hold for continuous representations of compact Lie groups, if in statements and proofs we replace

$$\frac{1}{|G|} \sum_{g \in G} \dots$$
 by $\int_G \dots d\mu(g)$,

Hence:

- (i) Every finite-dimensional representation is equivalent to a unitary representation.
- (ii) Matrix elements of unitary irreps Γ^{μ} , Γ^{ν} (non-equivalent for $\mu \neq \nu$) are orthogonal,

$$\int_{G} \overline{\Gamma^{\mu}(g)_{jk}} \, \Gamma^{\nu}(g)_{j'k'} \, \mathrm{d}\mu(g) = \frac{1}{d_{\mu}} \delta_{\mu\nu} \delta_{jj'} \delta_{kk'} \,,$$

with $d_{\mu} = \dim \Gamma^{\mu}$.

(iii) Similarly for the characters $\chi^{\mu}(g) = \operatorname{tr} \Gamma^{\mu}(g) = \sum_{j} \Gamma^{\mu}(g)_{jj}$,

$$\int_{G} \overline{\chi^{\mu}(g)} \, \chi^{\nu}(g) \, \mathrm{d}\mu(g) = \delta_{\mu\nu} \, .$$

This implies again

$$\Gamma \text{ is irreducible } \Leftrightarrow \int_G |\chi(g)|^2 \,\mathrm{d}\mu(g) = 1 \,,$$

as well as: If Γ is a direct sum of irreps, $\Gamma = \bigoplus_{\mu} a_{\mu} \Gamma^{\mu}$, then

$$a_{\mu} = \int_{G} \overline{\chi^{\mu}(g)} \,\chi(g) \,\mathrm{d}\mu(g) \,.$$

For finite groups we also showed completeness of the representation matrices' elements (Problem 16) and complete reducibility of the regular representation, carried by the group algebra $\mathcal{A}(G)$ (Section 2.7). This implied that there were only finitely many non-equivalent irreps.

Similarly one can show that compact Lie groups have countably many non-equivalent (continuous) irreducible representations, which are all of finite dimension. Moreover, every continuous representation is a direct sum of irreducible representations. All this follows from the *Peter-Weyl theorem*.

Consider the vector $L^2(G)$ of functions $\phi: G \to \mathbb{C}$, with scalar product

$$\langle \phi | \psi \rangle = \int_G \overline{\phi(g)} \, \psi(g) \, \mathrm{d}\mu(g)$$

The role of the regular representation is played by Γ defined as

$$(\Gamma(h)\phi)(g) = \phi(h^{-1}g) \quad \forall h \in G.$$

Convince yourself that Γ is a representation.

Does it make sense that functions $\phi : G \to \mathbb{C}$ now play the role that elements of $\mathcal{A}(G)$ played for finite groups?

Theorem 19. (Peter-Weyl)

Let G be a compact Lie group with non-equivalent irreps Γ^{μ} , dim $\Gamma^{\mu} = d_{\mu}$. Then the matrix elements $\sqrt{d_{\mu}} \Gamma^{\mu}(g)_{jk}$, $j, k = 1, \ldots, d_{\mu}$, form a complete set of orthonormal functions for $L^{2}(G)$.

(without proof)

Remarks:

1. We can thus expand every function $\phi \in L^2(G)$ as

$$\phi(g) = \sum_{\mu,j,k} c_{\mu j k} \, \Gamma^{\mu}(g)_{j k} \qquad \text{with} \qquad c_{\mu j k} = d_{\mu} \int_{G} \overline{\Gamma^{\mu}(g)_{j k}} \, \phi(g) \, \mathrm{d}\mu(g)$$

(convergence in L^2 -sense).

What does this reduce to for $G = SO(2) \cong U(1)$? (cf. Section 6.2)

2. In physics notation we write completeness as

$$\sum_{\mu,j,k} d_{\mu} \Gamma^{\mu}(g)_{jk} \overline{\Gamma^{\mu}(h)_{jk}} = \delta(g-h) \quad \text{with} \quad \int_{G} \delta(g-h) f(g) \, \mathrm{d}\mu(g) = f(h) \, \mathrm{d}\mu(g) = f$$

6.8 Irreducible representations of SO(3)

For every $g \in SO(3)$ exists an $X \in \mathfrak{so}(3)$ s.t. $g = e^{iX}$. Choose, e.g., the basis

$$J_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \qquad J_2 = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}, \qquad J_3 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

of $\mathfrak{so}(3)$ with

$$[J_j, J_k] = \mathrm{i} \sum_{\ell} \varepsilon_{jk\ell} J_{\ell}.$$

Then

$$R_{\vec{n}}(\psi) = \mathrm{e}^{-\mathrm{i}\psi\vec{n}\vec{J}}$$
 where $\vec{n}\vec{J} = \sum_{j=1}^{3} n_j J_j$

(rotation about axis \vec{n} by angle ψ , cf. Section 6.5):

$$\texttt{https://youtu.be/uPs-QSVt13s} \ (6 \min) \tag{1}$$

From every representation of a Lie group we obtain (by taking derivatives) a representation of the corresponding Lie algebra (in terms of matrices). More precisely, with g(t), g(0) = e, $\dot{g}(0) = iX$ and a rep Γ of G define the derived rep d Γ of \mathfrak{g} by

$$\mathrm{d}\Gamma(X) = -\mathrm{i}\frac{\mathrm{d}}{\mathrm{d}t}\Gamma\big(g(t)\big)\Big|_{t=0}$$

From a representation of the Lie algebra $\mathfrak{so}(3)$ we obtain (by exponentiating) a representation of the group SO(3), if the global (topological) properties match those of SO(3).

Construction of reps of $\mathfrak{so}(3)$. The matrix (operator)

$$J^2 = \sum_{j=1}^3 J_j^2$$

commutes with every $X \in \mathfrak{so}(3)$:

$$\texttt{https://youtu.be/sxbtMVW2PJA} (5 \min) \tag{2}$$

Remark: J^2 is not in the Lie algebra; it is a so-called Casimir operator and an element of the enveloping algebra (see later).

Consequences:

- 1. $[J^2, X] = 0 \ \forall X \in \mathfrak{so}(3)$ implies $[J^2, g] = 0 \ \forall g \in SO(3)$. Why?
- 2. Consider a representation of SO(3). Now all this also holds for the representation matrices of g, X, and J^2 .
- 3. If the representation is irreducible then according to Schur's Lemma (Theorem 4), the representation matrix of J^2 is a multiple of the identity matrix.

Next time we will construct all irreps of $\mathfrak{so}(3)$ in terms of simultaneous eigenvectors of the representation matrices of J^2 and one generator. After exponentiation these become irreps of SO(3) if the global properties are correct.