Groups and Representations

Instruction 19 for the preparation of the lecture on 30 June 2021

6.7 Properties of compact Lie groups

Theorems 2 and 6 for representations of finite groups also hold for continuous representations of compact Lie groups, if in statements and proofs we replace

$$
\frac{1}{|G|} \sum_{g \in G} \cdots \quad \text { by } \quad \int_{G} \ldots \mathrm{~d} \mu(g)
$$

Hence:
(i) Every finite-dimensional representation is equivalent to a unitary representation.
(ii) Matrix elements of unitary irreps $\Gamma^{\mu}, \Gamma^{\nu}$ (non-equivalent for $\mu \neq \nu$) are orthogonal,

$$
\int_{G} \overline{\Gamma^{\mu}(g)_{j k}} \Gamma^{\nu}(g)_{j^{\prime} k^{\prime}} \mathrm{d} \mu(g)=\frac{1}{d_{\mu}} \delta_{\mu \nu} \delta_{j j^{\prime}} \delta_{k k^{\prime}}
$$

with $d_{\mu}=\operatorname{dim} \Gamma^{\mu}$.
(iii) Similarly for the characters $\chi^{\mu}(g)=\operatorname{tr} \Gamma^{\mu}(g)=\sum_{j} \Gamma^{\mu}(g)_{j j}$,

$$
\int_{G} \overline{\chi^{\mu}(g)} \chi^{\nu}(g) \mathrm{d} \mu(g)=\delta_{\mu \nu} .
$$

This implies again

$$
\Gamma \text { is irreducible } \Leftrightarrow \int_{G}|\chi(g)|^{2} \mathrm{~d} \mu(g)=1
$$

as well as: If Γ is a directe sum of irreps, $\Gamma=\bigoplus_{\mu} a_{\mu} \Gamma^{\mu}$, then

$$
a_{\mu}=\int_{G} \overline{\chi^{\mu}(g)} \chi(g) \mathrm{d} \mu(g) .
$$

For finite groups we also showed completeness of the representation matrices' elements (Problem 16) and complete reducibility of the regular representation, carried by the group algebra $\mathcal{A}(G)$ (Section 2.7). This implied that there were only finitely many non-equivalent irreps.

Similarly one can show that compact Lie groups have countably many non-equivalent (continuous) irreducible representations, which are all of finite dimension. Moreover, every continuous representation is a direct sum of irreducible representations. All this follows from the Peter-Weyl theorem.

Consider the vector $L^{2}(G)$ of functions $\phi: G \rightarrow \mathbb{C}$, with scalar product

$$
\langle\phi \mid \psi\rangle=\int_{G} \overline{\phi(g)} \psi(g) \mathrm{d} \mu(g) .
$$

The role of the regular representation is played by Γ defined as

$$
(\Gamma(h) \phi)(g)=\phi\left(h^{-1} g\right) \quad \forall h \in G .
$$

Convince yourself that Γ is a representation.
Does it make sense that functions $\phi: G \rightarrow \mathbb{C}$ now play the role that elements of $\mathcal{A}(G)$ played for finite groups?

Theorem 19. (Peter-Weyl)
Let G be a compact Lie group with non-equivalent irreps Γ^{μ}, $\operatorname{dim} \Gamma^{\mu}=d_{\mu}$. Then the matrix elements $\sqrt{d_{\mu}} \Gamma^{\mu}(g)_{j k}, j, k=1, \ldots, d_{\mu}$, form a complete set of orthonormal functions for $L^{2}(G)$.
(without proof)

Remarks:

1. We can thus expand every function $\phi \in L^{2}(G)$ as

$$
\phi(g)=\sum_{\mu, j, k} c_{\mu j k} \Gamma^{\mu}(g)_{j k} \quad \text { with } \quad c_{\mu j k}=d_{\mu} \int_{G} \overline{\Gamma^{\mu}(g)_{j k}} \phi(g) \mathrm{d} \mu(g)
$$

(convergence in L^{2}-sense).
What does this reduce to for $G=\mathrm{SO}(2) \cong \mathrm{U}(1)$? (cf. Section 6.2)
2. In physics notation we write completeness as

$$
\sum_{\mu, j, k} d_{\mu} \Gamma^{\mu}(g)_{j k} \overline{\Gamma^{\mu}(h)_{j k}}=\delta(g-h) \quad \text { with } \quad \int_{G} \delta(g-h) f(g) \mathrm{d} \mu(g)=f(h) .
$$

6.8 Irreducible representations of $\mathrm{SO}(3)$

For every $g \in \mathrm{SO}(3)$ exists an $X \in \mathfrak{s o}(3)$ s.t. $g=\mathrm{e}^{\mathrm{i} X}$. Choose, e.g., the basis

$$
J_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\mathrm{i} \\
0 & \mathrm{i} & 0
\end{array}\right), \quad J_{2}=\left(\begin{array}{ccc}
0 & 0 & \mathrm{i} \\
0 & 0 & 0 \\
-\mathrm{i} & 0 & 0
\end{array}\right), \quad J_{3}=\left(\begin{array}{ccc}
0 & -\mathrm{i} & 0 \\
\mathrm{i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

of $\mathfrak{s o}(3)$ with

$$
\left[J_{j}, J_{k}\right]=\mathrm{i} \sum_{\ell} \varepsilon_{j k \ell} J_{\ell} .
$$

Then

$$
R_{\vec{n}}(\psi)=\mathrm{e}^{-\mathrm{i} \psi \vec{n} \vec{J}} \quad \text { where } \quad \vec{n} \vec{J}=\sum_{j=1}^{3} n_{j} J_{j}
$$

(rotation about axis \vec{n} by angle ψ, cf. Section 6.5):
https://youtu.be/uPs-QSVt13s (6 min)

From every representation of a Lie group we obtain (by taking derivatives) a representation of the corresponding Lie algebra (in terms of matrices). More precisely, with $g(t), g(0)=e$, $\dot{g}(0)=\mathrm{i} X$ and a rep Γ of G define the derived rep $\mathrm{d} \Gamma$ of \mathfrak{g} by

$$
\mathrm{d} \Gamma(X)=-\left.\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t} \Gamma(g(t))\right|_{t=0}
$$

From a representation of the Lie algebra $\mathfrak{s o}(3)$ we obtain (by exponentiating) a representation of the group $\mathrm{SO}(3)$, if the global (topological) properties match those of $\mathrm{SO}(3)$.
Construction of reps of $\mathfrak{s o (3)}$. The matrix (operator)

$$
J^{2}=\sum_{j=1}^{3} J_{j}^{2}
$$

commutes with every $X \in \mathfrak{s o (3) : ~}$
https://youtu.be/sxbtMVW2PJA (5 min)

Remark: J^{2} is not in the Lie algebra; it is a so-called Casimir operator and an element of the enveloping algebra (see later).

Consequences:

1. $\left[J^{2}, X\right]=0 \forall X \in \mathfrak{s o}(3)$ implies $\left[J^{2}, g\right]=0 \forall g \in \mathrm{SO}(3)$. Why?
2. Consider a representation of $\mathrm{SO}(3)$. Now all this also holds for the representation matrices of g, X, and J^{2}.
3. If the representation is irreducible then according to Schur's Lemma (Theorem 4), the representation matrix of J^{2} is a multiple of the identity matrix.
Next time we will construct all irreps of $\mathfrak{s o}(3)$ in terms of simultaneous eigenvectors of the representation matrices of J^{2} and one generator. After exponentiation these become irreps of $\mathrm{SO}(3)$ if the global properties are correct.
