Groups and Representations

Instruction 20 for the preparation of the lecture on 5 July 2021

6.8 Irreducible representations of $\mathrm{SO}(3)$ (cont.)

Assume we are given a representation of $\mathrm{SO}(3)$.
Notation: We denote the representation matrices of g, X, J^{2} also by g, X, J^{2}.
Construct irreducible subspaces (and thus irreps) as follows:

- Choose a suitable starting vector.
- Generate an irreducible basis by repeatedly applying the generators.

Suitable starting vector: Joint normalised eigenvector of J^{2} and J_{3} (Why can we choose it in this way?), in Dirac notation

$$
J_{3}|m\rangle=m|m\rangle
$$

We define $J_{ \pm}=J_{1} \pm \mathrm{i} J_{2}$. Then

$$
\left[J_{ \pm}, J_{3}\right]=\mp J_{ \pm} \begin{array}{cc}
\text { and thus } \quad J_{3} J_{ \pm}|m\rangle=(m \pm 1) J_{ \pm}|m\rangle, \\
\text { https://youtu.be/4RE3ZFSPyGI (} 4 \mathrm{~min} \text {) } \tag{1}
\end{array}
$$

i.e. either $J_{ \pm}|m\rangle \propto|m \pm 1\rangle$ or $J_{ \pm}|m\rangle=0$.

Since the invariant subspace has to be finite dimensional the sequence

$$
\ldots, J_{-}|m\rangle,|m\rangle, J_{+}|m\rangle, J_{+}^{2}|m\rangle, \ldots
$$

has to terminate on both sides, say at $m=j$ and at $m=\ell$ with $j \geq \ell$,

$$
\begin{aligned}
J_{3}|j\rangle & =j|j\rangle, & J_{3}|\ell\rangle & =\ell|\ell\rangle \\
J_{+}|j\rangle & =0, & J_{-}|\ell\rangle & =0
\end{aligned}
$$

What is the dimension of this irreducible subspace?
We further have

$$
\begin{array}{r}
J^{2}=J_{3}^{2}+J_{-} J_{+}+J_{3} \quad \text { and } \quad J^{2}=J_{3}^{2}+J_{+} J_{-}-J_{3}, \\
\text { https://youtu.be/-qlcOB1JBmo (2 min) } \tag{2}
\end{array}
$$

and in particular (why?)

$$
\begin{aligned}
& J^{2}|j\rangle=\left(J_{3}^{2}+J_{3}+J_{-} J_{+}\right)|j\rangle=j(j+1)|j\rangle, \\
& J^{2}|\ell\rangle=\left(J_{3}^{2}-J_{3}+J_{+} J_{-}\right)|\ell\rangle=\ell(\ell-1)|\ell\rangle .
\end{aligned}
$$

Since both eigenvalues have to be identical (why?) we conclude that $\ell=-j$ (why?) and $j \geq 0$. Hence, we can label $\mathfrak{s o}(3)$ irreps by $j=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$

- The dimension of irrep j is $2 j+1$.

From now on denote orthonormal basis vectors as $|j m\rangle$. Then

$$
\begin{aligned}
J^{2}|j m\rangle & =j(j+1)|j m\rangle \\
J_{3}|j m\rangle & =m|j m\rangle \\
J_{ \pm}|j m\rangle & =[j(j+1)-m(m \pm 1)]^{1 / 2}|j, m \pm 1\rangle
\end{aligned}
$$

Verify the last identity by calculating the norm of $J_{ \pm}|j m\rangle$.

Irreps of $\mathbf{S O}(3)$. Now we distinguish again between g and $\Gamma(g)$ and between X and $\mathrm{d} \Gamma(X)$. Denote by Γ^{j} the potential irrep of $\mathrm{SO}(3)$ carried by $\{|j m\rangle: m=-j \ldots, j\}$, i.e. the matrix elements are

$$
\Gamma^{j}\left(\mathrm{e}^{-\mathrm{i} \psi \vec{n} \vec{J}}\right)_{m m^{\prime}}=\langle j m| \mathrm{e}^{-\mathrm{i} \psi \mathrm{~d} \Gamma(\vec{n} \vec{J})}\left|j m^{\prime}\right\rangle .
$$

Only for integer j does this define a representation of $\mathrm{SO}(3)$:
https://youtu.be/Cviw6oLYN68 (5 min)

Irreps of $\mathbf{S U (2) .}$. The Pauli matrices $\sigma_{1}, \sigma_{2}, \sigma_{3}$ (see Problem 32) form a basis of the Lie algebra $\mathfrak{s u}(2)$ with

$$
\left[\sigma_{j}, \sigma_{k}\right]=2 \mathrm{i} \sum_{l} \varepsilon_{j k l} \sigma_{l},
$$

i.e. the matrices $\sigma_{k} / 2$ satisfy the same relations as the J_{k}, and thus $\mathfrak{s u}(2) \cong \mathfrak{s o}(3)$. Hence we also already know all irreps of $\mathfrak{s u}(2)$. Since $\mathrm{SU}(2)=\exp (\mathfrak{i s u}(2))$ (cf. Problems $32 \&$ 34), we get irreps of $\mathrm{SU}(2)$ for all $j \in \mathbb{N}_{0} / 2$.

Determine the characters of all irreps of $\mathrm{SO}(3)$ and of all irreps of $\mathrm{SU}(2)$.

6.9 Remarks on some classical Lie groups

Definition: (adjoint representation)
Let G be a (matrix) Lie group with corresponding Lie algebra \mathfrak{g}, and let $g \in G$. The map $\mathrm{Ad}: g \mapsto \operatorname{Ad}_{g}$ with

$$
\begin{aligned}
\operatorname{Ad}_{g}: \mathfrak{g} & \rightarrow \mathfrak{g} \\
X & \mapsto g X g^{-1}=\operatorname{Ad}_{g}(X)
\end{aligned}
$$

is called adjoint representation of G (on \mathfrak{g}).

Remarks:

1. Ad is actually a representation. Show this.
2. We also define $\operatorname{Ad}_{g}(h)=g h g^{-1}$ for $h \in G$.
3. For $X \in \mathfrak{g}$ we further define $\operatorname{ad}_{X}: \mathfrak{g} \rightarrow \mathfrak{g}$ by

$$
\operatorname{ad}_{X}(Y)=\left.\frac{1}{\mathrm{i}} \frac{\mathrm{~d}}{\mathrm{~d} t} \operatorname{Ad}_{\mathrm{e}^{\mathrm{i} X t}}(Y)\right|_{t=0}=\left.\frac{1}{\mathrm{i}} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\mathrm{e}^{\mathrm{i} X t} Y \mathrm{e}^{-\mathrm{i} X t}\right)\right|_{t=0}=[X, Y] .
$$

Lemma 20. (Principal axis theorem for unitary matrices)

For every $g \in \mathrm{U}(n)$ there exists an $h \in \mathrm{U}(n)$ s.t. $h^{\dagger} g h$ is diagonal, in particular

$$
g=h\left(\begin{array}{ccc}
\mathrm{e}^{\mathrm{i} \varphi_{1}} & & 0 \\
& \ddots & \\
0 & & \mathrm{e}^{\mathrm{i} \varphi_{n}}
\end{array}\right) h^{\dagger}
$$

with real φ_{j}.
Proof: Reduce to the principal axis theorem for Hermitian matrices.
Let $M_{\phi}:=\left\{g \in \mathrm{U}(n): \mathrm{e}^{\mathrm{i} \phi}\right.$ is not eigenvalue of $\left.g\right\}$. Then

$$
\begin{aligned}
f_{\phi}: M_{\phi} & \rightarrow \mathbb{C}^{n \times n} \\
g & \mapsto \mathrm{i}\left(\mathrm{e}^{\mathrm{i} \phi}+g\right)\left(\mathrm{e}^{\mathrm{i} \phi}-g\right)^{-1}
\end{aligned}
$$

(generalised Cayley transformation) maps unitary g to Hermitian matrices $A=f_{\phi}(g)$:
https://youtu.be/MDeXGKn0odo (3 min)

Now there exists an $h \in \mathrm{U}(n)$ s.t. $h^{\dagger} A h=D$ is diagonal (principal axis theorem for Hermitian matrices). Furthermore, we can explicitly invert f_{ϕ} :
https://youtu.be/BZg9dikdumE (2 min)

Finally, for given $g \in \mathrm{U}(n)$ choose ϕ s.t. $g \in M_{\phi}$, call $A=f_{\phi}(g)$, and choose $h \in \mathrm{U}(n)$ s.t. $h^{\dagger} A h=D$ is diagonal. Then h also diagonalises g :

$$
h^{\dagger} g h=h^{\dagger} \mathrm{e}^{\mathrm{i} \phi}(A+\mathrm{i})^{-1} h h^{\dagger}(A-\mathrm{i}) h=\mathrm{e}^{\mathrm{i} \phi}(D+\mathrm{i})^{-1}(D-\mathrm{i}) .
$$

Explain why the analogous result also holds for $g \in \mathrm{SU}(n) \subset \mathrm{U}(n)$, with $h \in \mathrm{SU}(n)$.

