Universität Tübingen, Fachbereich Mathematik Dr. Stefan Keppeler

Groups and Representations

Instruction 20 for the preparation of the lecture on 5 July 2021

6.8 Irreducible representations of SO(3) (cont.)

Assume we are given a representation of SO(3).

Notation: We denote the representation matrices of g, X, J^2 also by g, X, J^2 .

Construct irreducible subspaces (and thus irreps) as follows:

- ► Choose a suitable starting vector.
- ▶ Generate an irreducible basis by repeatedly applying the generators.

Suitable starting vector: Joint normalised eigenvector of J^2 and J_3 (Why can we choose it in this way?), in Dirac notation

$$J_3|m\rangle = m|m\rangle$$

We define $J_{\pm} = J_1 \pm i J_2$. Then

$$[J_{\pm}, J_3] = \mp J_{\pm} \quad \text{and thus} \quad J_3 J_{\pm} |m\rangle = (m \pm 1) J_{\pm} |m\rangle,$$

https://youtu.be/4RE3ZFSPyGI (4 min) (1)

i.e. either $J_{\pm}|m\rangle \propto |m \pm 1\rangle$ or $J_{\pm}|m\rangle = 0$.

Since the invariant subspace has to be finite dimensional the sequence

$$\ldots, J_{-}|m\rangle, |m\rangle, J_{+}|m\rangle, J_{+}^{2}|m\rangle, \ldots$$

has to terminate on both sides, say at m = j and at $m = \ell$ with $j \ge \ell$,

What is the dimension of this irreducible subspace?

We further have

$$J^{2} = J_{3}^{2} + J_{-}J_{+} + J_{3} \quad \text{and} \quad J^{2} = J_{3}^{2} + J_{+}J_{-} - J_{3},$$

https://youtu.be/-qlcOB1JBmo (2min) (2)

and in particular (why?)

$$J^{2}|j\rangle = (J_{3}^{2} + J_{3} + J_{-}J_{+})|j\rangle = j(j+1)|j\rangle,$$

$$J^{2}|\ell\rangle = (J_{3}^{2} - J_{3} + J_{+}J_{-})|\ell\rangle = \ell(\ell-1)|\ell\rangle.$$

Since both eigenvalues have to be identical (why?) we conclude that $\ell = -j$ (why?) and $j \ge 0$. Hence, we can label $\mathfrak{so}(3)$ irreps by $j = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$

▶ The dimension of irrep j is 2j + 1.

From now on denote orthonormal basis vectors as $|jm\rangle$. Then

$$\begin{split} J^2 |jm\rangle &= j(j+1)|jm\rangle \\ J_3 |jm\rangle &= m|jm\rangle \\ J_{\pm} |jm\rangle &= [j(j+1) - m(m\pm 1)]^{1/2}|j,m\pm 1\rangle \end{split}$$

Verify the last identity by calculating the norm of $J_{\pm}|jm\rangle$.

Irreps of SO(3). Now we distinguish again between g and $\Gamma(g)$ and between X and $d\Gamma(X)$. Denote by Γ^j the *potential* irrep of SO(3) carried by $\{|jm\rangle : m = -j \dots, j\}$, i.e. the matrix elements are

$$\Gamma^{j} \left(\mathrm{e}^{-\mathrm{i}\psi\vec{n}\vec{J}} \right)_{mm'} = \langle jm | \, \mathrm{e}^{-\mathrm{i}\psi \, \mathrm{d}\Gamma(\vec{n}\vec{J})} \, | jm' \rangle \,.$$

Only for integer j does this define a representation of SO(3):

Irreps of SU(2). The Pauli matrices σ_1 , σ_2 , σ_3 (see Problem 32) form a basis of the Lie algebra $\mathfrak{su}(2)$ with

$$[\sigma_j, \sigma_k] = 2\mathrm{i} \sum_l \varepsilon_{jkl} \sigma_l \,,$$

i.e. the matrices $\sigma_k/2$ satisfy the same relations as the J_k , and thus $\mathfrak{su}(2) \cong \mathfrak{so}(3)$. Hence we also already know all irreps of $\mathfrak{su}(2)$. Since $\mathrm{SU}(2) = \exp(\mathfrak{isu}(2))$ (cf. Problems 32 & 34), we get irreps of $\mathrm{SU}(2)$ for all $j \in \mathbb{N}_0/2$.

Determine the characters of all irreps of SO(3) and of all irreps of SU(2).

6.9 Remarks on some classical Lie groups

Definition: (adjoint representation)

Let G be a (matrix) Lie group with corresponding Lie algebra \mathfrak{g} , and let $g \in G$. The map $\operatorname{Ad} : g \mapsto \operatorname{Ad}_g$ with

$$\operatorname{Ad}_g: \mathfrak{g} \to \mathfrak{g}$$
$$X \mapsto gXg^{-1} = \operatorname{Ad}_g(X)$$

is called adjoint representation of G (on \mathfrak{g}).

Remarks:

- 1. Ad is actually a representation. Show this.
- 2. We also define $\operatorname{Ad}_g(h) = ghg^{-1}$ for $h \in G$.
- 3. For $X \in \mathfrak{g}$ we further define $\operatorname{ad}_X : \mathfrak{g} \to \mathfrak{g}$ by

$$\operatorname{ad}_{X}(Y) = \left. \frac{1}{\operatorname{i}} \frac{\mathrm{d}}{\mathrm{d}t} \operatorname{Ad}_{\operatorname{e}^{\operatorname{i}Xt}}(Y) \right|_{t=0} = \left. \frac{1}{\operatorname{i}} \frac{\mathrm{d}}{\mathrm{d}t} \left(\operatorname{e}^{\operatorname{i}Xt} Y \operatorname{e}^{-\operatorname{i}Xt} \right) \right|_{t=0} = \left[X, Y \right].$$

Lemma 20. (Principal axis theorem for unitary matrices)

For every $g \in U(n)$ there exists an $h \in U(n)$ s.t. $h^{\dagger}gh$ is diagonal, in particular

$$g = h \begin{pmatrix} e^{i\varphi_1} & 0 \\ & \ddots & \\ 0 & e^{i\varphi_n} \end{pmatrix} h^{\dagger}$$

with real φ_j .

Proof: Reduce to the principal axis theorem for Hermitian matrices. Let $M_{\phi} := \{g \in U(n) : e^{i\phi} \text{ is not eigenvalue of } g\}$. Then

$$\begin{aligned} f_{\phi} &: M_{\phi} \to \mathbb{C}^{n \times n} \\ g &\mapsto \mathrm{i}(\mathrm{e}^{\mathrm{i}\phi} + g)(\mathrm{e}^{\mathrm{i}\phi} - g)^{-1} \end{aligned}$$

(generalised Cayley transformation) maps unitary g to Hermitian matrices $A = f_{\phi}(g)$:

Now there exists an $h \in U(n)$ s.t. $h^{\dagger}Ah = D$ is diagonal (principal axis theorem for Hermitian matrices). Furthermore, we can explicitly invert f_{ϕ} :

$$https://youtu.be/BZg9dikdumE (2min)$$
(5)

Finally, for given $g \in U(n)$ choose ϕ s.t. $g \in M_{\phi}$, call $A = f_{\phi}(g)$, and choose $h \in U(n)$ s.t. $h^{\dagger}Ah = D$ is diagonal. Then h also diagonalises g:

$$h^{\dagger}gh = h^{\dagger}e^{i\phi}(A+i)^{-1}hh^{\dagger}(A-i)h = e^{i\phi}(D+i)^{-1}(D-i).$$

Explain why the analogous result also holds for $g \in SU(n) \subset U(n)$, with $h \in SU(n)$.