Universität Tübingen, Fachbereich Mathematik Dr. Stefan Keppeler

Groups and Representations

Instruction 21 for the preparation of the lecture on 7 July 2021

6.9 Remarks on some classical Lie groups (cont.)

Theorem 21. For every $g \in U(n)$ there exists an $X \in u(n)$ s.t. $g = e^{iX}$.

Proof:

https://youtu.be/2SganmGZf7k (2min)(1)

Remarks:

- 1. Similarly, for every $g \in SU(n)$ there exists an $X \in \mathfrak{su}(n)$, s.t. $g = e^{iX}$. Why?
- 2. Similarly for $g \in SO(2n)$: One first shows that there exists an $h \in SO(2n)$ s.t.

$$g = h \begin{pmatrix} R_1 & 0 \\ & \ddots & \\ 0 & & R_n \end{pmatrix} h^T$$

with $R_j \in SO(2)$. Why? For SO(2n+1) the diagonal matrix has an additional row with an entry 1. Then also every $g \in SO(n)$ can be written as e^{iX} with $X \in \mathfrak{so}(n)$.

- 3. In all these cases we can in principle construct irreps using the same strategy as in Section 6.8 for SO(3) or SU(2): First construct irreducible representations of the Lie algebra and by exponentiation (potential) reps of the group.
- 4. The diagonal matrices which appear in this procedure are maximal abelian subgroups (so-called *maximal tori*) of the corresponding group.

6.10 More on Lie algebras and related topics

Definition: (representation of a Lie algebra)

Let \mathfrak{g} be a Lie algebra and V a vector space. A representation ϕ is a linear map that assigns to each $X \in \mathfrak{g}$ a linear map $\phi(X) : V \to V$ s.t.

$$\phi(\mathbf{i}[X,Y]) = \underbrace{[\phi(X),\phi(Y)]}_{\text{Lie bracket}} \quad \forall X,Y \in \mathfrak{g}$$

Remark: The i-decoration comes from our convention that $G = \exp(i\mathfrak{g})$.

Examples:

1. ad : $\mathfrak{g} \ni X \mapsto \mathrm{ad}_X$ with $\mathrm{ad}_X(Y) = [X, Y]$ defines a representation of \mathfrak{g} on \mathfrak{g} :

2. From a rep Γ of a Lie group G we obtain (by differentiation) a rep d Γ of the Lie algebra \mathfrak{g} ,

$$\mathrm{d}\Gamma(X) = \frac{1}{\mathrm{i}} \left. \frac{\mathrm{d}}{\mathrm{d}t} \Gamma(\mathrm{e}^{\mathrm{i}Xt}) \right|_{t=0} \,.$$

Definition: (enveloping algebra)

Let \mathfrak{g} be a Lie algebra with basis $\{X_j\}$. The enveloping algebra $E(\mathfrak{g})$ consists of formal polynomials in the generators

$$\sum_{j} a_j(\mathbf{i}X_j) + \sum_{jk} b_{jk}(\mathbf{i}X_j)(\mathbf{i}X_k) + \sum_{jkl} c_{jkl}(\mathbf{i}X_j)(\mathbf{i}X_k)(\mathbf{i}X_l) + \dots, \qquad a_j, b_{jk}, c_{jkl} \in \mathbb{R},$$

where $iX_j iX_k$ and $iX_k iX_j + iX_l$ have to be identified if $[iX_j, iX_k] = iX_l$.

Remarks:

- 1. A representation ϕ of a Lie algebra then also induces a representation of the enveloping algebra, whereby the formal products and sums become matrix products and matrix sums.
- 2. A basis of the enveloping algebra is, e.g., given by those monomials in the generators for which the indices are non-decreasing from left to right:

$$https://youtu.be/tydgmSEW18I (2min)$$
(3)

Definition: (Casimir operator)

 $C \in E(\mathfrak{g})$ is called Casimir operator if C commutes with all elements of the enveloping algebra, i.e. if

$$[C, A] = 0 \quad \forall \ A \in E(\mathfrak{g}) \,.$$

Example: $J^2 := J_1^2 + J_2^2 + J_3^2$ for SO(3) (cf. Section 6.8).

Remarks:

- 1. In particular a Casimir operator commutes with all $X \in \mathfrak{g} \subseteq E(\mathfrak{g})$.
- 2. This implies $e^{iX}Ce^{-iX} = C \forall X \in \mathfrak{g}$, i.e. in the cases of Sections 6.8 and 6.9, where $G = \exp(\mathfrak{ig})$, we immediately conclude $gCg^{-1} = C \forall g \in G$.
- 3. $gCg^{-1} = C \forall g \in G$ is even true more generally, since one can show:
 - \blacktriangleright exp(ig) always contains a neighbourhood of the identity in G.
 - ▶ By taking (finite) products $e^{iX}e^{iY}e^{iZ}\dots$ one reaches all $g \in G_0$, the connected component of the identity.
 - ▶ If G is connected, then for representations (of the Lie group, the Lie algebra and the enveloping algebra) we thus have $[d\Gamma(C), \Gamma(g)] = 0 \forall g \in G$, and according to Schur's Lemma (Theorem ??) it follows that for irreps $d\Gamma(C)$ is a scalar multiple of $\mathbb{1}$.