Groups and Representations

Instruction 22 for the preparation of the lecture on 12 July 2021

7 Tensor method for constructing irreps of GL(N) and subgroups

7.1 Setting

In the following let V be complex vector space with $\operatorname{dim} V=N$, i.e. $V \cong \mathbb{C}^{N}$.
Define $V^{\otimes n}=\underbrace{V \otimes \cdots \otimes V}_{n \text { factors }}$. Form tensor products from $\left|v_{j}\right\rangle \in V, j=1, \ldots, n$:

$$
\bigotimes_{j=1}^{n}\left|v_{j}\right\rangle=\left|v_{1}\right\rangle \otimes\left|v_{2}\right\rangle \otimes \cdots \otimes\left|v_{n}\right\rangle \in V^{\otimes n} .
$$

General $|v\rangle \in V^{\otimes n}$ are linear combinations of tensor products, called tensors of rank n. $V^{\otimes n}$ carries reps Γ of GL(N) and D of S_{n}

$$
\begin{gathered}
\Gamma(g) \bigotimes_{j=1}^{n}\left|v_{j}\right\rangle=\bigotimes_{j=1}^{n} \gamma(g)\left|v_{j}\right\rangle, \quad \text { with } \gamma(g)=g \text { (defining rep), } \\
D(p)\left(\left|v_{1}\right\rangle \otimes\left|v_{2}\right\rangle \otimes \cdots \otimes\left|v_{n}\right\rangle\right)=\left|v_{p^{-1}(1)}\right\rangle \otimes\left|v_{p^{-1}(2)}\right\rangle \otimes \cdots \otimes\left|v_{p^{-1}(n)}\right\rangle,
\end{gathered}
$$

everything continued by linearity; D also extends to a rep of $\mathcal{A}\left(S_{n}\right)$.
Convince yourself that D is a rep.
These reps commute, i.e.

$$
\Gamma(g) D(p)|v\rangle=D(p) \Gamma(g)|v\rangle \quad \forall p \in S_{n}, \forall g \in \mathrm{GL}(N), \forall|v\rangle \in V^{\otimes n}
$$

and even $\forall p \in \mathcal{A}\left(S_{n}\right)$.
Notation: Form now on, we omit Γ and D, e.g. we write $g p|v\rangle=p g|v\rangle$.
How does $p \in S_{n}$ act on an arbitrary $|x\rangle \in V^{\otimes n}$?
https://youtu.be/EEEq-bCuc5c (3 min)

7.2 Decomposition of $V^{\otimes n}$ into irreducible invariant subspaces with respect to S_{n} and GL(N)

7.2.1 Symmetry classes

Let Θ_{λ}^{p} be a Young tableau, e_{λ}^{p} the corresponding Young operator, and $L_{\lambda}=\mathcal{A}\left(S_{n}\right) e_{\lambda}$ the minimal left ideal generated by e_{λ}
In the following we will see:

For fixed $|v\rangle \in V^{\otimes n}$ the subspace

$$
L_{\lambda}|v\rangle=\mathcal{A}\left(S_{n}\right) e_{\lambda}|v\rangle
$$

(if non-empty) is invariant and irreducible w.r.t. S_{n}.

The subspace

$$
e_{\lambda}^{p} V^{\otimes n}
$$

is invariant and irreducible w.r.t. GL (N).

Then we will be able to choose a basis $\{|\lambda, \alpha, a\rangle\}$ of $V^{\otimes n}$ s.t.
λ lables the so-called symmetry class, given by a Young diagram,
α labels the irreducible invariant subspaces w.r.t. S_{n},
a labels the irreducible invariant subspaces w.r.t. GL (N).
Lemma 22. For fixed $|\alpha\rangle \in V^{\otimes n}$ the subspace $T_{\lambda}(\alpha)=L_{\lambda}|\alpha\rangle$ is either empty or
(i) $T_{\lambda}(\alpha)$ is invariant and irreducible under S_{n} and
(ii) the S_{n} irrep carried by $T_{\lambda}(\alpha)$ is given by the irrep carried by L_{λ}.

Proof:
https: //youtu.be/Nv1AecrF2vE (6 min)

7.2.2 Totally symmetric and totally anti-symmetric tensors

Let $\lambda=\mathrm{s}=\square \square \cdots \square$, i.e. $e_{\mathrm{s}}=s$ is the total symmetriser of S_{n}, L_{s} is one-dimensional.
\Rightarrow For given $|\alpha\rangle$ the subspace $T_{\mathrm{s}}(\alpha)$ is one-dimensional, $T_{\mathrm{s}}(\alpha)=\operatorname{span}\left(e_{s}|\alpha\rangle\right)$.
These tensors are totally symmmetric (in all indices).
Each $T_{\mathrm{s}}(\alpha)$ carries the trivial representation of S_{n}.
Example: $n=3, N=2$
https://youtu.be/Crhbo74J j0k (5 min)

We denote the space spanned by the tensors of symmetry class s by T_{s}^{\prime}.

Totally anti-symmetric tensors exist only for $n \leq N$,
$\lambda=\mathrm{a}=\begin{aligned} & \square \\ & \vdots \\ & \square\end{aligned}, \quad \begin{aligned} & \text { since for } n>N \text { every basis vector contains at least } \\ & \text { two identical indices, anti-symmetrisation yields zero. }\end{aligned}$
The S_{n} irrep carried by $T_{\mathrm{a}}(\alpha)$ is sgn.
Example: $n=2, N \geq 2$
https://youtu.be/sX_vkzbmiiQ (2 min)

Construct all totally symmetric tensors for $n=2$ and arbitrary N. How many are there?

