Universität Tübingen, Fachbereich Mathematik Dr. Stefan Keppeler

Groups and Representations

Instruction 22 for the preparation of the lecture on 12 July 2021

7 Tensor method for constructing irreps of GL(N) and subgroups 7.1 Setting

In the following let V be complex vector space with dim V = N, i.e. $V \cong \mathbb{C}^N$. Define $V^{\otimes n} = \underbrace{V \otimes \cdots \otimes V}_{n \text{ factors}}$. Form tensor products from $|v_j\rangle \in V$, $j = 1, \ldots, n$:

$$\bigotimes_{j=1}^n |v_j\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_n\rangle \in V^{\otimes n}.$$

General $|v\rangle \in V^{\otimes n}$ are linear combinations of tensor products, called *tensors of rank n*. $V^{\otimes n}$ carries reps Γ of GL(N) and D of S_n

$$\Gamma(g)\bigotimes_{j=1}^{n}|v_{j}\rangle = \bigotimes_{j=1}^{n}\gamma(g)|v_{j}\rangle, \quad \text{with } \gamma(g) = g \text{ (defining rep)},$$
$$D(p)(|v_{1}\rangle \otimes |v_{2}\rangle \otimes \cdots \otimes |v_{n}\rangle) = |v_{p^{-1}(1)}\rangle \otimes |v_{p^{-1}(2)}\rangle \otimes \cdots \otimes |v_{p^{-1}(n)}\rangle$$

everything continued by linearity; D also extends to a rep of $\mathcal{A}(S_n)$.

Convince yourself that D is a rep.

These reps commute, i.e.

$$\Gamma(g)D(p)|v\rangle = D(p)\Gamma(g)|v\rangle \qquad \forall p \in S_n, \ \forall g \in \operatorname{GL}(N), \ \forall |v\rangle \in V^{\otimes n},$$

and even $\forall p \in \mathcal{A}(S_n)$.

Notation: Form now on, we omit Γ and D, e.g. we write $gp|v\rangle = pg|v\rangle$. How does $p \in S_n$ act on an arbitrary $|x\rangle \in V^{\otimes n}$?

7.2 Decomposition of $V^{\otimes n}$ into irreducible invariant subspaces with respect to S_n and $\operatorname{GL}(N)$

7.2.1 Symmetry classes

Let Θ_{λ}^{p} be a Young tableau, e_{λ}^{p} the corresponding Young operator, and $L_{\lambda} = \mathcal{A}(S_{n})e_{\lambda}$ the minimal left ideal generated by e_{λ}

In the following we will see:

For fixed $|v\rangle \in V^{\otimes n}$ the subspace $L_{\lambda}|v\rangle = \mathcal{A}(S_n)e_{\lambda}|v\rangle$ The subspace $e_{\lambda}^{p}V^{\otimes n}$

(if non-empty) is invariant and irreducible is invariant and irreducible w.r.t. GL(N). w.r.t. S_n .

Then we will be able to choose a basis $\{|\lambda, \alpha, a\rangle\}$ of $V^{\otimes n}$ s.t.

 λ lables the so-called symmetry class, given by a Young diagram,

 α labels the irreducible invariant subspaces w.r.t. S_n ,

a labels the irreducible invariant subspaces w.r.t. $\operatorname{GL}(N)$.

Lemma 22. For fixed $|\alpha\rangle \in V^{\otimes n}$ the subspace $T_{\lambda}(\alpha) = L_{\lambda}|\alpha\rangle$ is either empty or

- (i) $T_{\lambda}(\alpha)$ is invariant and irreducible under S_n and
- (ii) the S_n irrep carried by $T_{\lambda}(\alpha)$ is given by the irrep carried by L_{λ} .

Proof:

7.2.2 Totally symmetric and totally anti-symmetric tensors

Let $\lambda = s = \square \square$, i.e. $e_s = s$ is the total symmetriser of S_n , L_s is one-dimensional.

 \Rightarrow For given $|\alpha\rangle$ the subspace $T_{\rm s}(\alpha)$ is one-dimensional, $T_{\rm s}(\alpha) = {\rm span}(e_s|\alpha\rangle)$.

These tensors are totally symmetric (in all indices).

Each $T_{\rm s}(\alpha)$ carries the trivial representation of S_n .

Example: n = 3, N = 2

https://youtu.be/Crhbo74Jj0k (5min)(3)

We denote the space spanned by the tensors of symmetry class s by $T'_{\rm s}$.

Totally anti-symmetric tensors exist only for $n \leq N$,

$$\lambda = \mathbf{a} = \begin{bmatrix} \vdots \\ \vdots \\ \vdots \end{bmatrix}, \qquad \begin{array}{l} \text{since for } n > N \text{ every basis vector contains at least} \\ \text{two identical indices, anti-symmetrisation yields zero.} \end{array}$$

The S_n irrep carried by $T_{\mathbf{a}}(\alpha)$ is sgn.

Example: $n = 2, N \ge 2$

Construct all totally symmetric tensors for n = 2 and arbitrary N. How many are there?