Groups and Representations

Instruction 24 for the preparation of the lecture on 19 July 2021

7.3 Irreps of $\mathrm{U}(N)$ and $\mathrm{SU}(N)$

The GL (N) irreps from Section 7.2 restrict to representations of subgroups, which do not need to be irreducible. They are, however, irreducible for $\mathrm{U}(N)$ and $\mathrm{SU}(N)$ but in general not for $\mathrm{O}(N)$ and $\mathrm{SO}(N)$.

$$
\begin{array}{ll}
\mathrm{U}(N) \text { and } \mathrm{SU}(N) & \text { https://youtu.be/WM6vX88PKG4 }(4 \mathrm{~min}) \\
\mathrm{O}(N) \text { and } \mathrm{SO}(N) & \text { https://youtu.be/_-ooGDPg204 (4 min) } \tag{2}
\end{array}
$$

Show that the GL (N) irrep corresponding to the Young diagram $\mathbf{a}=$ with N rows is given by the determinant:

- First recall that for vectors $\left|i_{1}, \ldots, i_{N}\right\rangle$ contributing to $e_{\mathrm{a}} g|\alpha\rangle$ all i_{k} are different.
- Write these vectors as $p|1, \ldots, N\rangle$ with a permutation p.
- Then calculate $e_{\mathrm{a}} g|1, \ldots, N\rangle$ for $g \in \operatorname{GL}(N)$.

Which irrep corresponds to a if we replace $\mathrm{GL}(N)$ by the subgroup $\mathrm{SU}(N)$?
In the exercises we will show that the $\mathrm{SU}(N)$ irreps corresponding to the Young diagrams (with row lenghts) $\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ and $\left(\lambda_{1}+k, \ldots, \lambda_{N}+k\right)$ are equivalent, e.g.

and

$$
\text { for } N=5 \text { and } k=2
$$

For $\mathrm{SU}(2)$, except for the trivial rep, all irreps can be labelled by one-row Young diagrams. What are the corresponding dimensions?

7.4 Reducing tensor products in terms of Young diagrams

Goal: Given two irreps Γ^{λ} and $\Gamma^{\lambda^{\prime}}$ of $\mathrm{GL}(N), \mathrm{U}(N)$ or $\mathrm{SU}(N)$ with Young diagrams λ and λ^{\prime} find the complete reduction of the product rep $\Gamma^{\lambda} \otimes \Gamma^{\lambda^{\prime}}$.
Examples and observations:

$$
\begin{equation*}
\square^{\otimes 2}, \square^{\otimes 3}, \square^{\otimes 4} \quad \text { https://youtu.be/FLPJbunjr9U (11 min) } \tag{3}
\end{equation*}
$$

Closer inspections leads to the Littlewood-Richardson rule (which we won't prove):

1. Write the number i in all boxes of row i of λ^{\prime}.
2. Add the boxes of λ^{\prime} to λ, first the 1 s , then the 2 s etc. adhering to the following rules:
(a) In each step the resulting diagram has to be a valid Young diagram and must not have more than N rows.
(b) No number may appear more than once in the same column.
(c) When reading the numbers row-wise from right to left beginning with the first row, then the second etc., and terminating this sequence at any point, there must never be more i s than $(i-1) \mathrm{s}$.
3. For $\operatorname{SU}(N)$ columns with N boxes can be omitted.

Always check your result by comparing dimensions on both sides of the equation.

Example:

$$
\begin{equation*}
\square \otimes \square \text { for } \mathrm{SU}(3) \quad \text { https://youtu.be/xrze6-yRWTI (10 min) } \tag{4}
\end{equation*}
$$

Reduce \square
\square for $\mathrm{SU}(3)$.

7.5 Complex conjugate representations

Observation: Sometimes $\operatorname{dim} \Gamma^{\lambda}=\operatorname{dim} \Gamma^{\lambda^{\prime}}$ for $\lambda \neq \lambda^{\prime}$. This may be "accidental" but often it can be understood systematically in terms of the following construction.
Example: Consider \square for $N=3$.
Basis tensors: (anti-symmetric tensors of rank 2 in 3 dimensions)

$$
|23\rangle-|32\rangle, \quad|31\rangle-|13\rangle, \quad|12\rangle-|21\rangle .
$$

Action of GL(3), e.g.

$$
\begin{aligned}
g(|12\rangle-|21\rangle)= & |i j\rangle\left(g_{i 1} g_{j 2}-g_{i 2} g_{j 1}\right) \\
= & \underbrace{|23\rangle\left(g_{21} g_{32}-g_{22} g_{31}\right)+|32\rangle\left(g_{31} g_{22}-g_{32} g_{21}\right)}_{=(|23\rangle-|32\rangle) \operatorname{det}\left(\begin{array}{l}
g_{21} \\
g_{31} \\
g_{22}
\end{array}\right)} \\
& +\underbrace{|31\rangle\left(g_{31} g_{12}-g_{32} g_{11}\right)+|13\rangle\left(g_{11} g_{32}-g_{12} g_{31}\right)}_{=(|31\rangle-|13\rangle)(-1) \operatorname{det}\left(\begin{array}{l}
g_{11} \\
g_{31} g_{12} \\
g_{32}
\end{array}\right)}, \\
& +\underbrace{|12\rangle\left(g_{11} g_{22}-g_{12} g_{21}\right)+|21\rangle\left(g_{21} g_{12}-g_{22} g_{11}\right)}_{=(|12\rangle-|21\rangle) \operatorname{det}\left(\begin{array}{l}
g_{11} g_{12} \\
g_{21} \\
g_{22}
\end{array}\right)},
\end{aligned}
$$

similarly for the other two basis elements. We find

$$
\Gamma \boxminus(g)=\left(\begin{array}{ccc}
\operatorname{det}\left(\begin{array}{ll}
g_{22} & g_{23} \\
g_{32} & g_{33}
\end{array}\right) & (-1) \operatorname{det}\left(\begin{array}{ll}
g_{21} & g_{23} \\
g_{31} & g_{33}
\end{array}\right) & \operatorname{det}\left(\begin{array}{ll}
g_{21} & g_{22} \\
g_{31} & g_{32}
\end{array}\right) \\
(-1) \operatorname{det}\left(\begin{array}{ll}
g_{12} & g_{13} \\
g_{32} & g_{33}
\end{array}\right) & \operatorname{det}\left(\begin{array}{ll}
g_{11} & g_{13} \\
g_{31} & g_{33}
\end{array}\right) & (-1) \operatorname{det}\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{31} & g_{32}
\end{array}\right) \\
\operatorname{det}\left(\begin{array}{ll}
g_{12} & g_{13} \\
g_{21} & g_{23}
\end{array}\right) & (-1) \operatorname{det}\left(\begin{array}{ll}
g_{11} & g_{13} \\
g_{21} & g_{23}
\end{array}\right) & \operatorname{det}\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)
\end{array}\right)=\operatorname{adj}(g)^{T},
$$

with the adjunct matrix $\operatorname{adj}(g)$. According to Cramer's rule $g^{-1}=\frac{\operatorname{adj}(g)}{\operatorname{det} g}$, i.e.

$$
\Gamma^{\boxminus}(g)=\operatorname{det} g \cdot\left(g^{-1}\right)^{T} .
$$

Remark: This is true for arbitrary $N>2$ and the Young diagram ($N-1$ boxes).
For $\operatorname{SU}(3)$ we have $\operatorname{det} g=1$ and $g^{-1}=g^{\dagger}$, i.e. $\Gamma \boxminus(g)=\bar{g}$. We write $\square=\bar{\square}$ and also put a $\overline{\mathrm{bar}}$ over the dimension
For GL (N), besides the defining rep g also $\left(g^{-1}\right)^{T}, \bar{g}$ and $\overline{\left(g^{-1}\right)^{T}}$ are N-dimensional irreps, in general non-equivalent.
For $\operatorname{SU}(N)$, due to $g^{\dagger}=g^{-1}$, we have

$$
\left(g^{-1}\right)^{T}=\bar{g} \quad \text { and } \quad \overline{\left(g^{-1}\right)^{T}}=g
$$

i.e. at most two of the four irreps are non-equivalent. For $\operatorname{SU}(2)$, even g and \bar{g} are equivalent, see Problem 40; for $N \geq 3$ they are are non-equivalent. In terms of Young diagrams we obtain the complex conjugate irrep by means of a simple procedure which we will study in the live session.

