Groups and Representations

Homework Assignment 6 (due on 9 June 2021)

Problem 22

We consider once more the CO_{2} molecule of Problems $12 \& 21$. In Problem 12 we found a six-dimensional representation of V_{4}. Decompose the six-dimensional carrier space into irreducible invariant subspaces by applying the generalised projection operators.

Problem 23

$V=\mathbb{C}^{2}$ carries the 2-dimensional irreducible representation of $D_{3} \cong S_{3}$ (cf. Section 2.4.1). On $W=V \otimes V$ we consider the corresponding product representation. Decompose W into irreducible invariant subspaces by applying the generalised projection operators, and determine the Clebsch-Gordan coefficients.

Problem 24

We consider the abelian group $C_{3}=\left\{e, a, a^{-1}\right\} \cong \mathbb{Z}_{3}$.
a) How many (non-equivalent) irreps does C_{3} have, what are their dimensions and how often do they appear in the regular rep?
b) Show that

$$
e_{1}=\frac{1}{3}\left(e+a+a^{-1}\right)
$$

is a primitive idempotent, generating the trivial rep.
c) Use the ansatz

$$
e_{2}=x e+y a+z a^{-1}
$$

in order to find all primitive idempotents.
d) For each primitive idempotent find out whether it generates a new (non-equivalent) irrep or an irrep equivalent to one generated by a previous idempotent.
e) Specify all minimal left ideals and construct the corresponding irreps of C_{3}. Collect your results in a table.

Problem 25

For $\sigma \in S_{n}$ and $j=1, \ldots, n$ let $k_{j}(\sigma)$ be the number of (disjoint) cycles of length j in σ, e.g. $k_{1}(e)=n$ and $k_{j}(e)=0 \forall j>1$. Show:
a) The conjugacy class of σ is determined by its cycle structure, i.e.

$$
[\sigma]:=\left\{\tau \sigma \tau^{-1}: \tau \in S_{n}\right\}=\left\{\tau \in S_{n}: k_{j}(\tau)=k_{j}(\sigma), j=1, \ldots, n\right\} .
$$

It's almost trivial using the birdtrack notation (see Section 1.4)!
Hint: In order to make the cycle structure visible consider the birdtrack diagram of σ and connect the first line on the left to the first line on the right etc.; e.g. for (12), (132) $\in S_{3}$ consider

b) The number of elements of a class is given by

$$
|[\sigma]|=\frac{n!}{\prod_{j \leq n} k_{j}!j^{k_{j}}}
$$

This is the perfect time for revisiting fun exercise (5) from Instruction 2.

