Groups and Representations

Homework Assignment 7 (due on 16 June 2021)

Problem 26

Determine once more the characters of the irreps of S_3 by using the methods of Section 4.3.1.

Problem 27

Let V be a vector space and $A: V \to V$ a linear map. Show that if A is nilpotent (i.e. if for some $n \in \mathbb{N}$ we have $A^n v = 0 \forall v \in V$) then tr A = 0.

Problem 28

In the quark model baryons are made out of three quarks. The latter are characterised i.a. by the quantum numbers I (isospin) and Y (hyper charge).

We have $(I, Y) = (\frac{1}{2}, \frac{1}{3})$ for the up-quark, $|u\rangle$, $(I, Y) = (-\frac{1}{2}, \frac{1}{3})$ for the down-quark, $|d\rangle$, and $(I, Y) = (0, -\frac{2}{3})$ for the strange-quark, $|s\rangle$. For products like $|udd\rangle = |u\rangle \otimes |d\rangle \otimes |d\rangle$ the values of I and Y are given by the sums of the values for the individual quarks.

For combinations of 3 quarks we thus have a 27-dimensional space V, which carries a representation of S_3 (by permutation of the factors).

- a) Which irreps are contained in this representation and what are their multiplicities?
- b) Let $U \subset V$ be an irreducible invariant subspace. What can we say about the values of I and Y on U?
- c) In a (I, Y)-diagram mark all points corresponding to vectors transforming in the irrep defined by \square .
- d) Repeat part (c) for the irrep with Young diagram . You find some potentially useful Octave/MATLAB-Code on the course webpage.

Problem 29

For $A \in \mathbb{C}^{n \times n}$ the matrix exponential is defined as

$$e^{A} = \exp(A) = \sum_{\nu=0}^{\infty} \frac{A^{\nu}}{\nu!}.$$

Prove:

a) The series converges absolutely and uniformly. HINT: On $\mathbb{C}^{n \times n}$ use the operator norm

$$||A|| = \sup_{v \in \mathbb{C}^n \setminus \{0\}} \frac{|Av|}{|v|},$$

for which we have $||AB|| \leq ||A|| ||B||$.

- b) For $T \in \operatorname{GL}(n)$ we have $e^{TAT^{-1}} = Te^{A}T^{-1}$.
- c) e^{tA} is the unique solution of the initial value problem $\dot{X}(t) = AX(t), X(0) = \mathbb{1}$.
- d) For $t, s \in \mathbb{C}$ we have $e^{(t+s)A} = e^{tA}e^{sA}$.

e)
$$(e^{A})^{\dagger} = e^{(A^{\dagger})}.$$

f) det $e^A = e^{\operatorname{tr} A}$.