Groups and Representations

Homework Assignment 7 (due on 16 June 2021)

Problem 26

Determine once more the characters of the irreps of S_{3} by using the methods of Section 4.3.1.

Problem 27

Let V be a vector space and $A: V \rightarrow V$ a linear map. Show that if A is nilpotent (i.e. if for some $n \in \mathbb{N}$ we have $A^{n} v=0 \forall v \in V$) then $\operatorname{tr} A=0$.

Problem 28

In the quark model baryons are made out of three quarks. The latter are characterised i.a. by the quantum numbers I (isospin) and Y (hyper charge).

We have $(I, Y)=\left(\frac{1}{2}, \frac{1}{3}\right)$ for the up-quark, $|u\rangle,(I, Y)=\left(-\frac{1}{2}, \frac{1}{3}\right)$ for the down-quark, $|d\rangle$, and $(I, Y)=\left(0,-\frac{2}{3}\right)$ for the strange-quark, $|s\rangle$. For products like $|u d d\rangle=|u\rangle \otimes|d\rangle \otimes|d\rangle$ the values of I and Y are given by the sums of the values for the individual quarks.
For combinations of 3 quarks we thus have a 27 -dimensional space V, which carries a representation of S_{3} (by permutation of the factors).
a) Which irreps are contained in this representation and what are their multiplicities?
b) Let $U \subset V$ be an irreducible invariant subspace. What can we say about the values of I and Y on U ?
c) In a (I, Y)-diagram mark all points corresponding to vectors transforming in the irrep defined by \qquad
d) Repeat part (c) for the irrep with Young diagram \square. You find some potentially useful Octave/Matlab-Code on the course webpage.

Problem 29

For $A \in \mathbb{C}^{n \times n}$ the matrix exponential is defined as

$$
\mathrm{e}^{A}=\exp (A)=\sum_{\nu=0}^{\infty} \frac{A^{\nu}}{\nu!}
$$

Prove:
a) The series converges absolutely and uniformly.

Hint: On $\mathbb{C}^{n \times n}$ use the operator norm

$$
\|A\|=\sup _{v \in \mathbb{C}^{n} \backslash\{0\}} \frac{|A v|}{|v|}
$$

for which we have $\|A B\| \leq\|A\|\|B\|$.
b) For $T \in \operatorname{GL}(n)$ we have $\mathrm{e}^{T A T^{-1}}=T \mathrm{e}^{A} T^{-1}$.
c) $\mathrm{e}^{t A}$ is the unique solution of the initial value problem $\dot{X}(t)=A X(t), X(0)=\mathbb{1}$.
d) For $t, s \in \mathbb{C}$ we have $\mathrm{e}^{(t+s) A}=\mathrm{e}^{t A} \mathrm{e}^{s A}$.
e) $\left(\mathrm{e}^{A}\right)^{\dagger}=\mathrm{e}^{\left(A^{\dagger}\right)}$.
f) $\operatorname{det} e^{A}=e^{\operatorname{tr} A}$.

