Groups and Representations

Homework Assignment 9 (due on 30 June 2021)

Problem 34

The Lie algebra of $\mathrm{SU}(2)$ is the (real) vector space

$$
\mathfrak{s u}(2)=\left\{X \in \mathbb{C}^{2 \times 2}: \operatorname{tr}(X)=0, X^{\dagger}=X\right\}
$$

A basis is given by the Pauli matrices (see Problem 32). Show:
a) $\mathrm{SU}(2)$ acts on $\mathfrak{s u}(2)$ by conjugation: $X \mapsto U X U^{\dagger}$.
b) $\langle X, Y\rangle=\frac{1}{2} \operatorname{tr}(X Y)$ defines a scalar product on $\mathfrak{s u}(2)$.

Hint: Begin by calculating $\operatorname{tr}\left(\sigma_{i} \sigma_{j}\right)$.
c) Every $U \in \mathrm{SU}(2) \cong S^{3}$ (cf. Problem 19) can be written as $\mathrm{e}^{-\frac{1}{2} \mathrm{i} \alpha \vec{\sigma} \cdot \vec{n}}$ with $\vec{n} \in S^{2} \hookrightarrow \mathbb{R}^{3}$ (cf. Problem 32). Over which values does α run?

Problem 35

The elements of $\mathfrak{s u}(2)$ can be written as $X=\vec{\sigma} \cdot \vec{x}$ with $\vec{x} \in \mathbb{R}^{3}$ (cf. Problems $32 \& 34$). The action of $\mathrm{SU}(2)$ on $\mathfrak{s u}(2)$ by conjugation (see Problem 34) then defines a homomorphism

$$
\begin{aligned}
& \varphi: \mathrm{SU}(2) \rightarrow \mathrm{GL}(3, \mathbb{R}) \\
& \vec{\sigma} \cdot \varphi(U) \vec{x}:=U(\vec{\sigma} \cdot \vec{x}) U^{\dagger}
\end{aligned}
$$

Show that
a) $\varphi(U)_{i j}=\frac{1}{2} \operatorname{tr}\left(\sigma_{i} U \sigma_{j} U^{\dagger}\right)$,
b) $\varphi(U)^{T}=\varphi(U)^{-1}$, and
c) $\operatorname{det}(\varphi(U))=1$. Hint: Recall the connectedness properties of $\mathrm{SU}(2)$.

Hence $\varphi(\mathrm{SU}(2)) \subset \mathrm{SO}(3)$.
d) Determine the kernel of φ.
e) Calculate $\varphi\left(U_{\alpha}\right)$ for $U_{\alpha}=\mathrm{e}^{-\frac{1}{2} \mathrm{i} \alpha \sigma_{3}}, \alpha \in[0,2 \pi)$ and explain that $\varphi(\mathrm{SU}(2))=\mathrm{SO}(3)$. What can we now conclude using the homomorphism theorem (Problem 8)?

Problem 36

Let V be a (complex, finite dimensional) vector space and let V^{*} be its dual, i.e. the space of all linear maps $V \rightarrow \mathbb{C}$. For a linear map $A: V \rightarrow V$ we define its dual $A^{*}: V^{*} \rightarrow V^{*}$ by $V^{*} \ni f \mapsto A^{*}(f)=f \circ A$. Let G be a group and $\Gamma: G \rightarrow \mathrm{GL}(V)$ a representation.
a) Define a representation $\Gamma^{*}: G \rightarrow \mathrm{GL}\left(V^{*}\right)$ in a natural way.

Hint: Simply replacing $\Gamma(g): V \rightarrow V$ by its dual map doesn't quite work (why?) but with a slight modification it does.
Let $\left\{e_{j}\right\}$ be a basis of V and $\left\{f_{j}\right\}$ the corresponding dual basis, i.e. $f_{j}\left(e_{k}\right)=\delta_{j k} \forall j, k=$ $1, \ldots, \operatorname{dim} V=\operatorname{dim} V^{*}$. For $g \in G$ we express $\Gamma(g): V \rightarrow V$ and $\Gamma^{*}(g): V^{*} \rightarrow V^{*}$ as matrices in the bases $\left\{e_{j}\right\}$ and $\left\{f_{j}\right\}$, respectively.
b) What is the relation between these two matrices? What happens if Γ is unitary?

