Groups and Representations

Homework Assignment 10 (due on 7 July 2021)

Problem 37

a) Determine the Haar measure for $\mathrm{SU}(2)$ in axis-angle parametrisation,

$$
U=\exp \left(-\mathrm{i} \frac{\alpha}{2} \vec{\sigma} \cdot \vec{x}\right),
$$

with $0 \leq \alpha \leq 2 \pi$ and $\vec{x} \in S^{2} \hookrightarrow \mathbb{R}^{3}$. Normalise s.t. $\operatorname{vol}(\mathrm{SU}(2))=1$.
Hint: It is convenient to first show $(\vec{x} \cdot \vec{\sigma})(\vec{y} \cdot \vec{\sigma})=\mathbb{1} \vec{x} \cdot \vec{y}+\mathrm{i} \vec{\sigma}(\vec{x} \times \vec{y})$ and to use the unit vectors $\vec{e}_{r}, \vec{e}_{\vartheta}, \vec{e}_{\varphi}$ for spherical coordinates.
b) Use the result of (a) together with the results of Problem 35 in order to determine the Haar measure for $\mathrm{SO}(3)$ in the axis-angle parametrisation.

Problem 38

In birdtrack notation we write vectors $v \in V$ or tensors $t \in V^{\otimes n}$, as blobs with one or several lines attached, e.g.

$$
v=\longrightarrow \in V \quad \text { or } \quad t=\square \in V^{\otimes 3}
$$

Expressed in a basis, components are

$$
v_{j}=\frac{j}{-} \quad \text { or } \quad t_{j k \ell}=\frac{\underline{j}}{\underline{k}} \int
$$

i.e. we write indices on the lines. Linear maps $A: V^{\otimes n} \rightarrow V^{\otimes n}$ are represented by blobs with n legs on each side, e.g.

$$
A=\bar{\square} \quad: V^{\otimes 3} \rightarrow V^{\otimes 3}
$$

and with $t \in V^{\otimes 3}$ we have

$$
A t=\square \quad \square \in V^{\otimes 3} .
$$

Birdtracks for permutations $p \in S_{n}$, or $\in \mathcal{A}\left(S_{n}\right)$, see Problem 25 \& Instruction 12, can now be applied (as linear maps) to elements of $V^{\otimes n}$, e.g.

$$
(12) t=\varnothing
$$

We obtain traces of linear maps by connecting the first line on the left to the first line on the right etc. (cf. also Problem 25), with each loop contributing a factor of $\operatorname{dim} V=N$ (why?), e.g. for $e,(12) \in \mathcal{A}\left(S_{3}\right)$ we get

$$
\operatorname{tr} e=\square=N^{3} \quad \text { and } \quad \operatorname{tr}(12)=\square=N^{2}
$$

a) Calculate the trace of $(132) \in S_{3}$ and the trace of $\bar{\square} \in \mathcal{A}\left(S_{3}\right)$.
b) Normalise the Young operators $e_{\square \mathbb{D}}, e_{\square}, e_{\square}^{(23)}, e_{\text {日 }} \in \mathcal{A}\left(S_{3}\right)$ of Instruction 13 s.t. they are idempotent. Determine the traces of these primitive idempotents. Later we will see that these are the dimensions of GL (N) irreps contained in $V^{\otimes 3}$.
Hint: Some identities from Instruction 12 are useful.

