Lineare Algebra 1: Übungsblatt 5

Aufgabe 18: Symmetrische Matrizen (25 Punkte)

Für $M = (M_{ij}) \in M(m \times n, \mathbb{K})$ sei die transponierte Matrix $M^T \in M(n \times m, \mathbb{K})$ definiert durch

$$(M^T)_{ij} = M_{ji}$$

für alle $i \in \{1, ..., n\}, j \in \{1, ..., m\}$. Weiter sei $\mathcal{S}(n, \mathbb{K}) := \{S \in M(n, \mathbb{K}) : S^T = S\}$ die Menge der symmetrischen $n \times n$ -Matrizen, und sei $\mathcal{A}(n, \mathbb{K}) := \{A \in M(n, \mathbb{K}) : A^T = -A\}$ die Menge aller antisymmetrischen $n \times n$ -Matrizen.

- (a) Zeigen Sie, dass die Transposition $M \mapsto M^T$ eine lineare Abbildung $M(m \times n, \mathbb{K}) \to M(n \times m, \mathbb{K})$ definiert.
- (b) Zeigen Sie, dass $(XY)^T = Y^T X^T$ für alle $X \in M(\ell \times m, \mathbb{K})$ und $Y \in M(m \times n, \mathbb{K})$.
- (c) Im folgenden habe \mathbb{K} die Eigenschaft, dass $1+1\neq 0$. Zeigen Sie, dass für jede Matrix $M\in M(n,\mathbb{K})$ genau ein Paar (S,A) aus einer symmetrischen Matrix $S\in \mathcal{S}(n,\mathbb{K})$ und einer antisymmetrischen Matrix $A\in \mathcal{A}(n,\mathbb{K})$ existiert, so dass gilt

$$M = S + A$$
.

(d) Zeigen Sie, dass $\mathcal{S}(n, \mathbb{K})$ und $\mathcal{A}(n, \mathbb{K})$ Unterräume von $M(n, \mathbb{K})$ sind und bestimmen Sie (mit Beweis) ihre jeweiligen Dimensionen. Erklären Sie anhand der Dimensionsformel für Unterräume, warum sich dabei dim $\mathcal{S}(n, \mathbb{K})$ + dim $\mathcal{A}(n, \mathbb{K}) = n^2$ ergibt.

Aufgabe 19: Die Lie-Algebra der $n \times n$ -Matrizen (25 Punkte)

Eine Lie-Algebra (benannt nach dem norwegischen Mathematiker Sophus Lie, 1842–1899) ist ein \mathbb{K} -Vektorraum V zusammen mit einer Verknüpfung $[\,\cdot\,,\cdot\,]:V\times V\to V$ (genannt Lie-Klammer) derart, dass für alle $A,B,C\in V,\,\alpha,\beta\in\mathbb{K}$ gilt:

- (i) $[\cdot, \cdot]$ ist bilinear, d.h. $[\alpha A + \beta B, C] = \alpha [A, C] + \beta [B, C]$ und $[A, \alpha B + \beta C] = \alpha [A, B] + \beta [A, C]$,
- (ii) [A, A] = 0, und
- (iii) es gilt die Jacobi-Identität [[A,B],C]+[[B,C],A]+[[C,A],B]=0.

Zeigen Sie, dass der Vektorraum $V = M(n, \mathbb{K})$ der $n \times n$ -Matrizen durch die Verknüpfung [A, B] := AB - BA (genannt Kommutator = lat. "Tauscher") zu einer Lie-Algebra wird.

Bitte wenden!

Aufgabe 20: Basiswechsel (25 Punkte)

(a) Seien $a, b \in \mathbb{R}^2$ linear unabhängig. Wir betrachten die lineare Abbildung $P_{a,b} : \mathbb{R}^2 \to \mathbb{R}^2$, die $v = \alpha a + \beta b$ auf

$$P_{a,b}v = \alpha a$$

abbildet. Was ist die geometrische Bedeutung dieser Abbildung? Bestimmen Sie die Matrix $M_{\mathcal{A}}(P_{a,b})$ zu $P_{a,b}$ bezüglich der Basis $\mathcal{A}=(a,b)$ und die Matrix $M_{\mathcal{K}}(P_{a,b})$ bezüglich der kanonischen Basis $\mathcal{K}=(e_1,e_2)$.

(b) Es seien die Basen $\mathcal{A} = ((1+i, 1-i), (1+2i, -1)) = (a_1, a_2)$ und $\mathcal{B} = ((2+2i, 2-2i), (1+i, -2)) = (b_1, b_2)$ des Vektorraums \mathbb{C}^2 gegeben. Dabei sind (1+i, 1-i) etc. die Darstellungen der Basisvektoren bezüglich der kanonischen Basis. Berechnen Sie die zugehörige Transformationsmatrix $S = (s_{ij})$ mit $b_j = \sum_i s_{ij} a_i$.

Aufgabe 21: Der Rang bei Komposition (25 Punkte)

Sei $A \in M(\ell \times m, \mathbb{K})$ und $B \in M(m \times n, \mathbb{K})$. Zeigen Sie, dass dann

$$\operatorname{Rang}(A) + \operatorname{Rang}(B) - m \le \operatorname{Rang}(AB) \le \min \{ \operatorname{Rang}(A), \operatorname{Rang}(B) \}$$

gilt. *Hinweis*: Betrachten Sie die Matrizen als lineare Abbildungen und verwenden Sie die Dimensionsformel für $\tilde{A} := A|_{\text{Bild}(B)}$.

Abgabe: Bis 16:00 Uhr am Donnerstag, 03.06.2021.

Vokabeln: Punktprodukt = dot product, invertierbar oder regulär = invertible oder regular, unendlich = infinite [infinit], endlich = finite [fainait], den Vektor v nach der Basis B entwickeln = to expand the vector v in the basis B, transponiert = transposed oder transpose, Einheitsmatrix = unit matrix oder identity matrix, Zähler (eines Bruchs) = numerator, Nenner = denominator, Kehrwert = reciprocal value oder inverse, ist gleich = equals, Gleichung = equation, Ungleichung = inequality, Satz = theorem, Beweis = proof, Definition = definition, Kreis = circle, Kreisscheibe = disk, Kugel(fläche) = sphere, Kugel(inneres) = ball.