Lineare Algebra 1: Übungsblatt 9

Aufgabe 34: Eigenwerte und Eigenvektoren bestimmen (25 Punkte)

(a) Bestimmen Sie alle Eigenwerte und die zugehörigen Eigenräume in \mathbb{R}^3 der Matrix

$$\left(\begin{array}{ccc} 4 & 2 & 1 \\ 2 & 4 & 1 \\ 4 & 4 & 4 \end{array}\right).$$

(b) Für welche $a, b \in \mathbb{R}$ ist die Matrix

$$A = \left(\begin{array}{ccc} -3 & 0 & 0\\ 2a & b & a\\ 10 & 0 & 2 \end{array}\right)$$

über \mathbb{R} diagonalisierbar? Führen Sie die Diagonalisierung für die erlaubten Parameter durch, d.h. bestimmen Sie S (invertierbar) und D (diagonal) so, dass $A = SDS^{-1}$.

Aufgabe 35: Spur und Determinante als Funktion der Eigenwerte (10 Punkte)

Sei V ein n-dimensionaler Vektorraum und $L \in \mathcal{L}(V)$ diagonalisierbar mit Eigenwerten $\lambda_1, \ldots, \lambda_r$ und geometrischen Vielfachheiten n_1, \ldots, n_r . Drücken Sie Spur(L) und $\det(L)$ durch die Eigenwerte von L aus.

Aufgabe 36: Verschiedenes zu Eigenwerten (40 Punkte)

Sei $A \in M(n,\mathbb{C})$ und λ ein Eigenwert mit zugehörigem Eigenraum $E_{\lambda} \subset \mathbb{C}^n$. Zeigen Sie:

- (a) λ ist ein Eigenwert von A^T mit Vielfachheiten $a_{A^T}(\lambda) = a_A(\lambda)$ und $g_{A^T}(\lambda) = g_A(\lambda)$.
- (b) Sei A regulär, dann ist $\lambda \neq 0$ und λ^{-1} Eigenwert zu A^{-1} . Geben Sie den zugehörigen Eigenraum an.
- (c) $\bar{\lambda}$ ist Eigenwert von \bar{A} . Geben Sie auch hier den zugehörigen Eigenraum an.
- (d) Sei A nilpotent, d.h. es gibt ein $m \in \mathbb{N}$, so dass $A^m = 0$. Zeigen Sie, dass daraus folgt $\lambda = 0$.

Bitte wenden!

Aufgabe 37: L²-Skalarprodukt (25 Punkte)

Zeigen Sie, dass auf dem Funktionenraum $C([-\pi, \pi], \mathbb{C})$ der stetigen komplex-wertigen Funktionen auf dem Intervall $[-\pi, \pi]$ durch

 $\langle u, v \rangle := \int_{-\pi}^{\pi} \overline{u(x)} \, v(x) \, \mathrm{d}x$

ein Skalarprodukt definiert wird. (Das Integral einer komplex-wertigen Funktion f kann definiert werden durch $\int f(x) dx = \int \operatorname{Re} f(x) dx + i \int \operatorname{Im} f(x) dx$.) Zeigen Sie weiter, dass die Funktionen

$$f_n(x) = \frac{1}{\sqrt{2\pi}} e^{inx}, \quad n \in \mathbb{Z}$$

ein Orthonormalsystem bilden. Wir definieren hier die komplexe e-Funktion durch die Euler-Formel $e^{ix} = \cos x + i \sin x$.

Hinweis: Benutzen Sie ohne Beweis, dass für stetige Funktionen $f: [-\pi, \pi] \to \mathbb{C}$ mit $|f(x_0)| > \varepsilon > 0$ für ein $x_0 \in [-\pi, \pi]$ eine offene Umgebung von x_0 existiert, so dass auf dieser Umgebung gilt $|f(x)| \ge \varepsilon$. Weiter dürfen Sie ohne Beweis benutzen, dass $e^{ix} e^{iy} = e^{ix+iy}$ und dass die Abbildung $\mathbb{C} \ni z \mapsto \overline{z}$ eine stetige Abbildung ist.

Aufgabe 38: Orientierung von Basen (freiwillig; 20 Zusatzpunkte)

Betrachten Sie einen \mathbb{R} -Vektorraum V der Dimension n und die Menge B(V) aller Basen von V. Zwei Elemente $\mathcal{A}, \mathcal{B} \in B(V)$ mit $\mathcal{A} = (v_1, \ldots, v_n)$ und $\mathcal{B} = (w_1, \ldots, w_n)$ heißen gleichorientiert, $\mathcal{A} \sim \mathcal{B}$, wenn der durch $Lv_i = w_i$ festgelegte Endomorphismus $L: V \to V$ positive Determinante hat. (a) Zeigen Sie, dass dies eine Äquivalenzrelation auf B(V) festlegt. (b) Wie viele Äquivalenzklassen gibt es?

Abgabe: Bis 16:00 Uhr am Donnerstag, 1.7.2021.