Klausur Mathematik für Physiker 4

Name:							
Matrikelnummer:						Geburtsdatum:	
Aufgabe:	1	2	3	4	5	Σ	
Punkte:							

Hinweise:

- Bearbeiten Sie alle Aufgaben 1–5. Die erreichbaren Punktzahlen addieren sich auf 36. Sie haben 90 Minuten Zeit.
- Bücher, Notizen und elektronische Hilfsmittel sind bei dieser Klausur nicht erlaubt.

Viel Erfolg!

KLAUSURTEIL FUNKTIONENTHEORIE

Aufgabe 1: (8 Punkte)

Wir betrachten die Funktion $f: \mathbb{C} \setminus \{0, 2\} \to \mathbb{C}$,

$$f(z) = \frac{1}{z^2 - 2z} = \frac{1}{2} \left(\frac{1}{z - 2} - \frac{1}{z} \right).$$

- (a) Begründen Sie, warum f holomorph ist, aber keine Stammfunktion hat.
- (b) Geben Sie ein (möglichst großes) Gebiet $G \subseteq \mathbb{C} \setminus \{0,2\}$ an, wo f|G eine Stammfunktion $F \colon G \to \mathbb{C}$ hat und geben Sie eine Abbildungsvorschrift für F an. Begründen Sie.

Aufgabe 2: (8 Punkte)

Wir defnieren den komplexen Cosinus hyperbolicus cosh: $\mathbb{C} \to \mathbb{C}$ und den komplexen Sinus hyperbolicus sinh: $\mathbb{C} \to \mathbb{C}$ durch

$$\cosh(z) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} z^{2n}, \quad \sinh(z) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} z^{2n+1}.$$

- (a) Begründen Sie, warum das wohldefiniert ist, d.h., warum die Reihen auf ganz \mathbb{C} konvergieren, und warum cosh und sinh holomorph sind.
- (b) Zeigen Sie für alle $z \in \mathbb{C}$:

$$\cosh'(z) = \sinh(z), \quad \sinh'(z) = \cosh(z).$$

Aufgabe 3: (8 Punkte)

Wir betrachten die Funktion f auf \mathbb{C} , die durch

$$f(z) = \frac{1}{\sin z}$$

gegeben ist.

- (a) Zeigen Sie, dass f nur isolierte Singularitäten hat, bestimmen Sie diese und berechnen Sie ihre Residuen dort.
- (b) Zeigen Sie, dass für alle $r \in \mathbb{R}_+ \setminus \mathbb{N}\pi$ gilt:

$$\int_{|z|=r} \frac{dz}{\sin z} = \pm 2\pi i.$$

2

Klausurteil Integralsätze

Aufgabe 4: Flächen-Unabhängigkeit (8 Punkte)

Sei $f: \mathbb{R}^3 \setminus \{\underline{0}\} \to \mathbb{R}^3$ definiert durch

$$\underline{f}(\underline{x}) = \frac{\underline{x}}{\|\underline{x}\|^3} \,.$$

- (a) Zeigen Sie, dass div $f(\underline{x}) = 0$ für alle $\underline{x} \neq \underline{0}$.
- (b) Sei $B_r(\underline{0})$ die Kugel vom Radius r um den Ursprung. Beantworten Sie folgende Fragen ohne Begründung oder Rechnung durch Wissen oder geometrische Überlegung: Wie lautet der Flächeninhalt der Sphäre $S_r(\underline{0}) := \partial B_r(\underline{0})$? Wie lautet der äußere Einheitsnormalenvektor $\underline{n}(\underline{x})$ auf $S_r(\underline{0})$ bei \underline{x} ?
- (c) Zeigen Sie (möglichst knapp), dass $\int_{S_r(0)} \underline{f} \cdot d\underline{S} = 4\pi$ für alle r > 0.
- (d) Wo liegt der Fehler in folgendem Argument? Da div $\underline{f}=0$, folgt aus dem Gaußschen Integralsatz, dass $\int_{S_r(\underline{0})} \underline{f} \cdot d\underline{S} = \int_{B_r(\underline{0})} d^3\underline{x} \operatorname{div} \underline{f} = 0$.
- (e) Zeigen Sie: $\int_{\mathcal{F}} \underline{f} \cdot d\underline{S} = 4\pi$ für jede (nach außen orientierte) stückweise- C^1 -Fläche \mathcal{F} , die den Ursprung umschließt, d.h. für die gilt $\underline{0} \notin \mathcal{F} = \partial \widetilde{B}$ mit kompaktem $\widetilde{B} \subset \mathbb{R}^3$ und $\underline{0} \in \widetilde{B}$. (Tipp: Es gibt R > 0 so, dass $\mathcal{F} \subset B_R(\underline{0})$.)

Aufgabe 5: Divergenz und Gradient (4 Punkte)

In \mathbb{R}^3 sei $\underline{f}(\underline{x}) = g(\|\underline{x}\|)\underline{x}$. Finden Sie eine C^1 -Funktion $g:[0,\infty) \to \mathbb{R}$ so, dass div $\underline{f} = 5\|\underline{x}\|^2$. Zeigen Sie außerdem, dass \underline{f} ein Gradientenfeld ist, und finden Sie eine Stammfunktion F von \underline{f} .