Sheet 1

Matrix analysis. Part I

Exercise 1: Problem 1 of IMC2021

Let A be a real $n \times n$ matrix such that $A^{3}=0$.

1. Prove that there is a unique real $n \times n$ matrix X that satisfies the equation

$$
X+A X+X A^{2}=A
$$

2. Express X in terms of A.

Exercise 2: Problem 5 of IMC2021

Let A be a real $n \times n$ matrix and suppose that for every positive integer m there exists a real symmetric matrix B such that

$$
2021 B=A^{m}+B^{2}
$$

Prove that $|\operatorname{det} A| \leq 1$.

Exercise 3: Problem 2 of IMC2020

Let A and B be $n \times n$ real matrices such that

$$
\operatorname{rk}(A B-B A+I)=1
$$

where I is the $n \times \mathrm{n}$ identity matrix.
Prove that

$$
\operatorname{tr}(A B A B)-\operatorname{tr}\left(A^{2} B^{2}\right)=\frac{1}{2} n(n-1)
$$

($\operatorname{rk}(M)$ denotes the rank of matrix M, i.e., the maximum number of linearly independent columns in $M ; \operatorname{tr}(M)$ denotes the trace of M, that is the sum of the diagonal elements in M.)

