IMC Training
SoSe 2022

Ángela Capel Cuevas

Sheet 2
6. May 2022

Functions. Part I

Exercise 1: Problem 1 of IMC2016

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and differentiable on (a, b). Suppose that f has infinitely many zeros, but there is no $x \in(a, b)$ with $f(x)=f^{\prime}(x)=0$.

1. Prove that $f(a) f(b)=0$.
2. Give an example of such a function on $[0,1]$.

Exercise 2: Problem 5 of IMC2020

Find all twice differentiable functions $f: \mathbb{R} \rightarrow(0,+\infty)$ satisfying

$$
f^{\prime \prime}(x) f(x) \geq 2\left(f^{\prime}(x)\right)^{2}
$$

for all $x \in \mathbb{R}$.

Exercise 3: Problem 6 of IMC2019

Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions such that g is differentiable. Assume that $\left(f(0)-g^{\prime}(0)\right)\left(g^{\prime}(1)-f(1)\right)>$ 0 . Show that there exists a point $c \in(0,1)$ such that $f(c)=g^{\prime}(c)$.

Exercise 4: Problem 7 of IMC2016

Consider a continuous function $f:[0,1] \rightarrow \mathbb{R}$ satisfying $f(x)+f(y) \geq|x-y|$ for all pairs $x, y \in[0,1]$. Find the minimum of $\int_{0}^{1} f$ over all such functions.

Exercise 5: Problem 2 of IMC2017

Let $f: \mathbb{R} \rightarrow(0, \infty)$ be a differentiable function, and suppose that there exists a constant $L>0$ such that

$$
\left|f^{\prime}(x)-f^{\prime}(y)\right| \leq L|x-y|
$$

for all x, y. Prove that

$$
\left(f^{\prime}(x)\right)^{2}<2 L f(x)
$$

holds for all x.

