IMC Training
SoSe 2022

Sheet 3

13. May 2022

Number theory. Part I

Exercise 1: Problem 1 of IMC2020

Let n be a positive integer. Compute the number of words w (finite sequences of letters) that satisfy all the following three properties:

1. w consists of n letters, all of them from the alphabet $\{a, b, c, d\}$.
2. w contains an even number of letters a.
3. w contains an even number of letters b.

Exercise 2: Problem 1 of IMC2019

Evaluate the product:

$$
\prod_{n=3}^{\infty} \frac{\left(n^{3}+3 n\right)^{2}}{n^{6}-64}
$$

Exercise 3: Problem 2 of IMC2015

For a positive integer n, let $f(n)$ be the number obtained by writing n in binary and replacing every 0 with 1 and vice versa. For example, $n=23$ is 10111 in binary, so $f(n)$ is 1000 in binary, therefore $f(n)=8$. Prove that

$$
\sum_{k=1}^{n} f(k) \leq \frac{n^{2}}{4}
$$

When does equality hold?

Exercise 4: Problem 3 of IMC2016

Let n be a positive integer. Also, let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be real numbers such that $a_{i}+b_{i}>0$ for $i=1,2, \ldots, n$. Prove that

$$
\sum_{i=1}^{n} \frac{a_{i} b_{i}-b_{i}^{2}}{a_{i}+b_{i}} \leq \frac{\sum_{i=1}^{n} a_{i} \cdot \sum_{i=1}^{n} b_{i}-\left(\sum_{i=1}^{n} b_{i}\right)^{2}}{\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)}
$$

Exercise 5: Problem 6 of IMC2020

Find all prime numbers p for which there exists a unique $a \in\{1,2, \ldots, p\}$ such that $a^{3}-3 a+1$ is divisible by p.

