Sheet 4

24. June 2022

Groups. Part I

Exercise 1: Problem 2 of IMC2018

Does there exist a field such that its multiplicative group is isomorphic to its additive group?

Exercise 2: Problem 6 of IMC2021

For a prime number p, let $G L_{2}(\mathbb{Z} / p \mathbb{Z})$ be the group of invertible 2×2 matrices of residues modulo p, and let S_{p} be the symmetric group (the group of all permutations) on p elements. Show that there is no injective group homomorphism $\varphi: G L_{2}(\mathbb{Z} / p \mathbb{Z}) \rightarrow S_{p}$.

Exercise 3: Problem 7 of IMC2020

Let G be a group and $n \geq 2$ be an integer. Let H_{1} and H_{2} be two subgroups of G that satisfy:

$$
\left[G: H_{1}\right]=\left[G: H_{2}\right]=n \text { and }\left[G:\left(H_{1} \cap H_{2}\right)\right]=n(n-1)
$$

Prove that H_{1} and H_{2} are conjugate in G.
Note: Here, $[G: H]$ denotes the index of the subgroup H, i.e. the number of distinct left cosets $x H$ of H in G. The subgroups H_{1} and H_{2} are conjugate if there exists an element $g \in G$ such that $g^{-1} H_{1} g=H_{2}$.

Exercise 4: Problem 10 of IMC2012

Let $c \geq 1$ be a real number. Let G be an abelian group and let $A \subset G$ be a finite set satisfying $|A+A| \leq c|A|$, where $X+Y:=\{x+y \mid x \in X, y \in Y\}$ and $|Z|$ denotes the cardinality of Z. Prove that

$$
|\underbrace{A+A+\ldots+A}_{k \text { times }}| \leq c^{k}|A|
$$

for every positive integer k.

