IMC Training SoSe 2022

Sheet 4

24. June 2022

Groups. Part I

Exercise 1: Problem 2 of IMC2018

Does there exist a field such that its multiplicative group is isomorphic to its additive group?

Exercise 2: Problem 6 of IMC2021

For a prime number p, let $GL_2(\mathbb{Z}/p\mathbb{Z})$ be the group of invertible 2×2 matrices of residues modulo p, and let S_p be the symmetric group (the group of all permutations) on p elements. Show that there is no injective group homomorphism $\varphi : GL_2(\mathbb{Z}/p\mathbb{Z}) \to S_p$.

Exercise 3: Problem 7 of IMC2020

Let G be a group and $n \ge 2$ be an integer. Let H_1 and H_2 be two subgroups of G that satisfy:

$$[G: H_1] = [G: H_2] = n$$
 and $[G: (H_1 \cap H_2)] = n(n-1)$.

Prove that H_1 and H_2 are conjugate in G.

Note: Here, [G:H] denotes the index of the subgroup H, i.e. the number of distinct left cosets xH of H in G. The subgroups H_1 and H_2 are conjugate if there exists an element $g \in G$ such that $g^{-1}H_1g = H_2$.

Exercise 4: Problem 10 of IMC2012

Let $c \ge 1$ be a real number. Let G be an abelian group and let $A \subset G$ be a finite set satisfying $|A + A| \le c|A|$, where $X + Y := \{x + y \mid x \in X, y \in Y\}$ and |Z| denotes the cardinality of Z. Prove that

$$|\underbrace{A+A+\ldots+A}_{k \text{ times}}| \le c^k |A|$$

for every positive integer k.