IMC Training
SoSe 2022

Sheet 5

1. July 2022

Sequences and series. Part I

Exercise 1: Problem 1 of IMC2018

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences of positive numbers. Show that the following statements are equivalent:

1. There is a sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ of positive numbers such that $\sum_{n=1}^{\infty} \frac{a_{n}}{c_{n}}$ and $\sum_{n=1}^{\infty} \frac{c_{n}}{b_{n}}$ both converge ;
2. $\sum_{n=1}^{\infty} \sqrt{\frac{a_{n}}{b_{n}}}$ converges .

Exercise 2: Problem 6 of IMC2015

Prove that

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(n+1)}<2
$$

Exercise 3: Problem 7 of IMC2012

Define the sequence a_{0}, a_{1}, \ldots inductively by $a_{0}=1, a_{1}=1 / 2$ and

$$
a_{n+1}=\frac{n a_{n}^{2}}{1+(n+1) a_{n}}, \quad \text { for } n \geq 1
$$

Show that the series $\sum_{k=0}^{\infty} \frac{a_{k+1}}{a_{k}}$ converges and determine its value.

Exercise 4: Problem 6 of IMC2010

1. A sequence x_{1}, x_{2}, \ldots of real numbers satisfies

$$
x_{n+1}=x_{n} \cos x_{n}, \quad \text { for all } n \geq 1
$$

Does it follow that this sequence converges for all initial values x_{1} ?
2. A sequence y_{1}, y_{2}, \ldots of real numbers satisfies

$$
y_{n+1}=y_{n} \sin y_{n}, \quad \text { for all } n \geq 1
$$

Does it follow that this sequence converges for all initial values y_{1} ?

Exercise 5: Problem 3 of IMC2015

Let $F(0)=0, F(1)=\frac{3}{2}$, and $F(n)=\frac{5}{2} F(n-1)-F(n-2)$ for $n \geq 2$.
Determine whether or not $\sum_{n=1}^{\infty} \frac{1}{F\left(2^{n}\right)}$ is a rational number.

