IMC Training SoSe 2022

Sheet 6

29. April 2022

Combinatory and optimization. Part I

Exercise 1: Problem 6 of IMC2018

Let k be a positive integer. Find the smallest positive integer n for which there exist k nonzero vectors $v_1, \ldots, v_k \in \mathbb{R}^n$ such that for every pair i, j of indices with |i - j| > 1 the vectors v_i and v_j are orthogonal.

Exercise 2: Problem 7 of IMC2011

An alien race has three genders: male, female and emale. A married triple consists of three persons, one from each gender, who all like each other. Any person is allowed to belong to at most one married triple. A special feature of this race is that feelings are always mutual — if x likes y, then y likes x.

The race is sending an expedition to colonize a planet. The expedition has n males, n females, and n emales. It is known that every expedition member likes at least k persons of each of the two other genders. The problem is to create as many married triples as possible to produce healthy offspring so the colony could grow and prosper.

- 1. Show that if n is even and $k = \frac{n}{2}$, then it might be impossible to create even one married triple.
- 2. Show that if $k \ge \frac{3n}{4}$, then it is always possible to create n disjoint married triples, thus marrying all of the expedition members.

Exercise 3: Problem 3 of IMC2012

Given an integer n > 1, let S_n be the group of permutations of the numbers 1, 2, ..., n. Two players, A and B, play the following game. Taking turns, they select elements (one element at a time) from the group S_n . It is forbidden to select an element that has already been selected. The game ends when the selected elements generate the whole group S_n . The player who made the last move loses the game. The first move is made by A. Which player has a winning strategy?

Exercise 4: Problem 4 of IMC2016

Let $n \ge k$ be positive integers, and let \mathcal{F} be a family of finite sets with the following properties:

- 1. \mathcal{F} contains at least $\binom{n}{k} + 1$ distinct sets containing exactly k elements.
- 2. For any two sets $A, B \in \mathcal{F}$, their union $A \cup B$ also belongs to \mathcal{F} .

Prove that \mathcal{F} contains at least three sets with at least n elements.

Exercise 5: Problem 8 of IMC2019

Let x_1, \ldots, x_n be real numbers. For any set $I \subset \{1, 2, \ldots, n\}$ let $s(I) = \sum_{i \in I} x_i$. Assume that the function $I \mapsto s(I)$ takes on at least 1.8^n values where I runs over all 2^n subsets of $\{1, 2, \ldots, n\}$. Prove that the number of sets $I \subset \{1, 2, \ldots, n\}$ for which s(I) = 2019 does not exceed 1.7^n .