IMC Training SoSe 2022

Sheet 7

Miscellanea. Part I

Exercise 1: Problem 1 of IMC2010

Let 0 < a < b. Prove that

$$\int_{a}^{b} (x^{2} + 1)e^{-x^{2}} dx \ge e^{-a^{2}} - e^{-b^{2}}.$$
(1)

Exercise 2: Problem 7 of IMC2010

Let a_0, a_1, \ldots, a_n be positive real numbers such that $a_{k+1} - a_k \ge 1$ for all $k = 0, 1, \ldots, n-1$. Prove that

$$1 + \frac{1}{a_0} \left(1 + \frac{1}{a_1 - a_0} \right) \dots \left(1 + \frac{1}{a_n - a_0} \right) \le \left(1 + \frac{1}{a_0} \right) \left(1 + \frac{1}{a_1} \right) \dots \left(1 + \frac{1}{a_n} \right) .$$
(2)

Exercise 3: Problem 1 of IMC2011

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. A point x is called a *shadow point* if there exists a point $y \in \mathbb{R}$ with y > x such that f(y) > f(x). Let a < b be real numbers and suppose that

- All the points of the open interval I = (a, b) are shadow points.
- *a* and *b* are not shadow points.

Prove that

- 1. $f(x) \leq f(b)$ for all a < x < b.
- 2. f(a) = f(b).