Test 1
20. May 2022

## Exercise 1: Problem 1 of IMC1994

1. Let $A$ be a $n \times n$, for $n \geq 2$, symmetric, invertible matrix with real positive elements. Show that

$$
z_{n} \leq n^{2}-2 n
$$

where $z_{n}$ is the number of zero elements in $A^{-1}$.
2. How many zero elements are there in the inverse of the $n \times n$ matrix

$$
A=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 2 & 2 & \ldots & 2 \\
1 & 2 & 1 & 1 & \ldots & 1 \\
1 & 2 & 1 & 2 & \ldots & 2 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 2 & 1 & 2 & \ldots & \ldots
\end{array}\right) ?
$$

a real $n \times n$ matrix such that $A^{3}=0$.

## Exercise 2: Problem 2 of IMC1995

Let $f$ be a continuous function on $[0,1]$ such that for every $x \in[0,1]$ we have

$$
\int_{x}^{1} f(t) d t \geq \frac{1-x^{2}}{2}
$$

Show that

$$
\int_{0}^{1} f^{2}(t) d t \geq \frac{1}{3}
$$

## Exercise 3: Problem 5 of IMC1995

Let $A$ and $B$ be $n \times n$ real matrices. Assume that there exist $n+1$ different real numbers $t_{1}, t_{2}, \ldots, t_{n+1}$ such that the matrices

$$
C_{i}=A+t_{i} B, \quad i=1,2, \ldots n+1
$$

are nilpotent (i.e. $C_{i}^{n}=0$ ).
Show that both $A$ and $B$ are nilpotent.

## Exercise 4: Problem 2 of IMC1995

Let $\left\{b_{n}\right\}_{n=0}^{\infty}$ be a sequence of positive real numbers such that $b_{0}=1$ and

$$
b_{n}=2+\sqrt{b_{n-1}}-2 \sqrt{1+\sqrt{b_{n-1}}}
$$

Calculate

$$
\sum_{n=1}^{\infty} b_{n} 2^{n}
$$

## Exercise 5: Problem 3, second day, of IMC1996

Let $G$ be the subgroup of $G L_{2}(\mathbb{R})$, generated by $A$ and $B$, where

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Let $H$ consist of those matrices $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ in $G$ for which $a_{11}=a_{22}=1$.

1. Show that $H$ is an abelian subgroup of $G$.
2. Show that $H$ is not finitely generated.

Remark. $G L_{2}(\mathbb{R})$ denotes the group of all $2 \times 2$ invertible matrices with real entries. Abelian means commutative. A group is finitely generated if there are a finite number of elements of the group such that every other element of the group can be obtained from these elements using the group operation.

## Exercise 6: Problem 4, second day, of IMC1996

Let $B$ be a bounded closed convex symmetric (with respect to the origin) set in $\mathbb{R}^{2}$ with boundary the curve $\Gamma$. Let $B$ have the property that the ellipse of maximal area contained in $B$ is the disc $D$ of radius 1 centered at the origin with boundary the circle $C$. Prove that $A \cap \Gamma \neq \emptyset$ for any arc $A$ of $C$ of length $l(A) \geq \frac{\pi}{2}$.

