Übungen zur Linearen Algebra 1 (Mathematik für Physiker II)

Prof. Dr. P. Pickl Kajetan Söhnen, Dominik Edelmann

Blatt 10

Aufgabe 1 (2 Punkte): Gegeben sei ein komplexer Vektorraum V und zwei Skalarprodukte $(\cdot, \cdot): V^2 \to \mathbb{C}$ und $[\cdot, \cdot]: V^2 \to \mathbb{C}$. Es seien $\lambda, \mu \in \mathbb{R}^+$.

Zeigen Sie: $\langle\cdot,\cdot\rangle:V^2\to\mathbb{K}$ definiert durch $\langle x,y\rangle:=\lambda(x,y)+\mu[x,y]$ ist ebenfalls ein Skalarprodukt.

Aufgabe 2 (2 Punkte): Gegeben seien die Fuktionen $1, \sin(2\pi x), \cos(2\pi x), \sin(4\pi x), \cos(4\pi x)$ mit Definitionsbereich [0,1]. Es sei V der von diesen Funktionen aufgespannte Untervekotrraum des Funktionenraums. Gegeben Sei das Skalarprodukt $\langle \cdot, \cdot \rangle$ definiert durch $\langle f, g \rangle := \int_0^1 f(x)g(x)dx$.

- (a) Zeigen Sie, dass die Funktionen $1, \sqrt{2}\sin(2\pi x), \sqrt{2}\cos(2\pi x), \sqrt{2}\sin(4\pi x), \sqrt{2}\cos(4\pi x)$ eine Orthonormalbasis von V bilden.
- (b) Bestimmen Sie $\int_0^1 f(x)g(x)dx$ für $f(x) = 1 + \sin 2\pi x$ und $g(x) = (\sin(2\pi x))^2$.

Aufgabe 3 (2 Punkte): Gegeben sei ein endlichdimensionaler, komplexer Vektorraum V und ein Skalarprodukt $\langle \cdot, \cdot \rangle : V^2 \to \mathbb{C}$. Außerdem Sei $\mathcal{M} \subset V$ eine Menge von Vektoren in V. Zeigen Sie, die Menge aller Vektoren, die auf ganz \mathcal{M} senkrecht stehen $U_{\mathcal{M}}^{\perp} := \{v \in V : \langle v, w \rangle = 0 \ \forall \ w \in \mathcal{M}\}$ ist ein Untervektorraum von V.

Zeigen Sie: $V = U_{\mathcal{M}}^{\perp} \oplus \operatorname{span}(\mathcal{M})$.

Aufgabe 4 (2 Punkte): Gegeben seien $n \times n$ -Matrizen A und B mit Einträgen $a_{ij} \in \mathbb{C}$ bzw. $b_{ij} \in \mathbb{C}$. Wir nehmen an, es existieren komplexe Zahlen λ und μ , so dass $b_{ij} = \lambda^i \mu^j a_{ij}$. Zeigen Sie: det $B = (\lambda \mu)^{\frac{n(n+1)}{2}} \det A$.

Abgabe eines Lösungspdfs je Gruppe bis Mo., den 11.07.2022, um 8.00 Uhr.