Übungen zur Linearen Algebra 1 (Mathematik für Physiker II)

Prof. Dr. P. Pickl Kajetan Söhnen, Dominik Edelmann

Blatt 3

Aufgabe 1 (2 Punkte): Überprüfen Sie, ob es sich bei folgenden Mengen um Vektorräume bzgl. des jeweils angegebenen Körpers handelt.

- (a) Die Menge \mathbb{Z} , Körper: Der in der Vorlesung definierte Restklassenkörper K_5 . (Als innere Verknüpfung wähle man die "normale" Addition in \mathbb{Z} , als äußere Verknüpfung wähle man die "normale" Multiplikation der Zahl aus K_5 mit der Zahl aus \mathbb{Z} .)
- (b) Die Menge aller auf dem Intervall [0,1] integrierbaren Funktionen, Körper: \mathbb{R} . (Als innere Verknüpfung wähle man die Addition von Funktionen, als äußere Verknüpfung wähle man die Multiplikation von reellen Zahlen mit Funktionen . Beide sind punktweise über die reguläre Addition bzw. Multiplikation in \mathbb{R} definiert.)

Aufgabe 2 (2 Punkte): Seien (V, \oplus_1, \odot_1) und (W, \oplus_2, \odot_2) Vektorräume über dem selbem Körper K. Zeigen Sie, dass $(V \times W, \oplus, \odot)$ ebenfalls ein Vektorraum über K ist, wobei die beiden Verknüpfungen aus folgende Weise definiert sind:

$$(a,v) \oplus (b,w) := (a \oplus_1 b, v \oplus_2 w) \ \forall \ a,b \in V \ v,w \in W$$
 (1)

$$\alpha \odot (a, v) := (\alpha \odot_1 a, \alpha \odot_2 v) \forall \ a \in V \ w \in W \ \alpha \in K.$$
 (2)

Aufgabe 3 (2 Punkte): Sei V ein Vektorraum über dem Körper K, $U \subset V$ und $W \subset V$ seien Untervektorräume von V. Zeigen Sie:

- (a) $U \cap W$ ist ebenfalls Untervektorraum von V.
- (b) $U \cup W$ ist nur dann Untervektorraum von V, wenn $U \subset W$ oder $W \subset U$.

Aufgabe 4 (2 Punkte): Betrachten Sie den Vektorraum $V \times W$ aus Aufgabe 2. Sei \mathcal{A} eine Basis von V, \mathcal{B} eine Basis von W. Zeigen Sie, dass $\mathcal{C} := \{(a, 0_W) : a \in \mathcal{A}\} \cup \{(0_V, b) : b \in \mathcal{B}\}$ eine Basis des Vektorraumes $V \times W$ bildet. Hier bezeichnen 0_V und 0_W die neutralen Elemente der Vektorräume V bzw. W.

Abgabe eines Lösungspdfs je Gruppe bis Mo., den 16.05.2022, um 8.00 Uhr.