
Quantum Shannon Theory and Beyond Universität Tübingen
SoSe 2022 Ángela Capel Cuevas

Graded Sheet 1 Due: 3. June 2022

Multiple state discrimination via semidefinite programming

Some background on Semidefinite programming
John Watrous’ notes for the course Semidefinite Programming in Quantum Information, Lectures.

CVX package for MATLAB
It can be downloaded from here, and there is an introductory video from Stephen Boyd on how to use
it here.

The aim of this project is to familiarize ourselves with optimization techniques that have a wide range of
applications in quantum information theory and beyond. As a main tool, we use semidefinite programs
(SDP), which are a special case of the more general class of convex optimization problems. The nice
property of SDPs is that, although the theory underlying the algorithms to solve these optimization
problems is non-trivial (see [1, 2] as an example), there exist robust implementations of these algorithms
that do not require knowledge about the underlying algorithms (except for highly complex problems).
Thus, the only non-trivial problem is to recognize that the problem at hand is an SDP and then to
use the provided software packages properly.

1 Introduction to semidefinite programs

In this section, you will learn what an SDP is. We will start with an example from quantum information
theory. Suppose you have some quantum device, which outputs a quantum system ρ?. The device is
set in such a way that the output system is described by a density matrix ρ1 with probability p and
it is described by ρ2 with probability 1 − p. You have this system at your disposal and you should
decide if the system is described by ρ1 or ρ2. Since ρ1 and ρ2 need not be orthogonal, you cannot
decide this problem with certainty. The best you can do is to perform a measurement on the system
and guess the state with the help of the information obtained via the measurement. Of course, you
want to maximize the probability of guessing right. The probability of guessing right is given by the
product rule as

Psucc = P(guess ρ1|ρ? = ρ1)P(ρ? = ρ1) + P(guess ρ2|ρ? = ρ2)P(ρ? = ρ2) (1)
= pP(guess ρ1|ρ? = ρ1) + (1− p)P(guess ρ2|ρ? = ρ2). (2)

Since you decide, based on your measurement outcome, between two hypotheses, it suffices to have a
measurement with two possible outcomes. Remember that the most general description of measurement
is given by a positive operator valued measure (POVM). For the case of a measurement with two
outcomes, such a POVM is fully described by two effect operators E1 and E2. In order to be a valid
choice, E1 and E2 have to satisfy the following relations:

E1 ≥ 0, E2 ≥ 0, E1 + E2 = 1, (3)

1

https://cs.uwaterloo.ca/~watrous/TQI-notes/TQI-notes.07.pdf
https://www.math.uwaterloo.ca/~anayak/Site/SDP_in_QI.html
http://cvxr.com/cvx/
http://cvxr.com/news/2014/02/cvx-demo-video/

where 1 denotes the identity matrix. W.l.o.g, by Born’s rule, we then have that P(guess ρ1|ρ? = ρ1) =
tr[E1ρ1] and P(guess ρ2|ρ? = ρ2)P(ρ? = ρ2) = tr[E2ρ2]. Hence, in order to choose the POVM such
that Psucc is maximized, you encounter the following optimization problem:

maximize: p tr[E1ρ1] + (1− p) tr[E2ρ2]

subject to: E1 + E2 = 1

E1 ≥ 0, E2 ≥ 0

(4)

The optimization problem (4) is in the form of an SDP. More specifically, it is an optimization over
Hermitian matrices with linear objective function, linear equality constraints and linear constraints
that require that some matrix is positive semidefinite. For a general SDP, we simply allow for more
than two variables, and more linear equality and inequality constraints.

Definition. 1.1. An SDP is an optimization problem of the following form

minimize/maximize: f(E1, E2, . . . , EN)

subject to: g1(E1, E2, . . . , EN) = A1

...
gM (E1, E2, . . . , EN) = AM

h1(E1, E2, . . . , EN) ≤ B1

...
hK(E1, E2, . . . , EN) ≤ BK

E1 ∈ Hd1 , E2 ∈ Hd2 , . . . , EN ∈ HdN

To specify such an SDP we need positive integers d1, d2, . . . dN , a1, a2, . . . aM , b1, b2, . . . bK ; Hermi-
tian matrices A1, A2, . . . , AM , B1, B2, . . . , BK , with Am ∈ Ham and Bk ∈ Hbk and linear maps
f, g1, g2, . . . , gM , h1, h2, . . . , hK , with the following signatures f :×N

n=1Hdn → R, gm :×N
n=1Hdn →

Ham and hk :×N
n=1Hdn → Hbk .

Remark. 1.

1) One can replace the equality constraints by two inequality constraints. Furthermore, all inequality
constraints can be combined into one function ×N

n=1Hdn → ×K
k=1Hbk . Hence there is some

redundancy in the definition above.

2) It follows from the Riesz-representation theorem that f can be written in the form f(E1, E2, . . . , EN) =∑N
n=1 tr[FnEn], for some Fn ∈ Hdn.

3) Valid constraints include

• E1 ≥ 0,

• E1 − E2 + 4E5 = A,

• XE1X
∗ − 5Y E1Y

∗ + ZE2Z
∗ ≤ 0,

• tr[E1] = 1,

where X,Y, Z are (not necessarily Hermitian) matrices and it is assumed that the dimensions
match, so that the expressions above make sense.

2

4) It can be shown that every constraint function can be written in the following form

g(E1, E2, . . . , EN) =
N∑

n=1

Ln∑
i=1

σn,iKn,iEnK
∗
n,i, (5)

where Kn,i is a a× dn matrix (for some a ∈ N), σn,i are real coefficients and Ln ∈ N.

Exercise 1: Trace-norm

The optimal value of (4) has an expression in terms of the trace norm ∥·∥1 := tr[|·|]. Derive such an
expression.

2 How to solve an SDP with MATLAB

In this section, you will learn how to use the cvx package in Matlab to solve SDPs. To install cvx in
Matlab, download the package under this link. Unpack the package, open Matlab and navigate to the
obtained folder. Then type cvx_setup. Your screen should now look like this:

Figure 1: Cvx package for Matlab.

It’s also recommendable that you watch the cvx introduction video by Stephen Boyd, which you can
find here. We are now ready to solve the first SDP in (4). The Matlab code in Figure 2 solves the
problem.

We will go through this code line by line. In the first four lines, we initialize the variables that
describe the problem. In our case, we try to discriminate between the maximally mixed state ρ1 =
1
21, which appears with probability p = 0.4 and the state ρ2 = |0⟩ ⟨0|. A semi-definite program is
described between the two lines cvx_begin and cvx_end. The expression sdp in line 5 tells cvx

3

http://cvxr.com/cvx/download/
http://cvxr.com/news/2014/02/cvx-demo-video/

Figure 2: Matlab code to solve the SDP in (4).

that inequalities are meant in the Loewner sense and quiet suppresses the output of the protocol of
the calculation. In lines 6 and 7, we declare two variables, the dim×dim hermitian matrices E1 and E2

(these are the measurement operators). In the same way you can declare any number of matrices. You
might want to declare n ∈ N Hermitian matrices of size d× d. Then the syntax would be variable
E(d,d,n) hermitian; and you can the access the k-th variable by E(:,:,k).

In lines 8-11, we declare our problem, which is that we want to maximize the expression p tr[E1ρ1] +
(1 − p) tr[E2ρ2]. Taking the real part of this expression is not necessary mathematically, since the
expression is always linear. However, due to rounding errors the real part might be negligibly small,
but non-zero (in which case cvx might output an error message). In lines 9 and 10 we demand
that E1 and E2 are positive semi-definite. The cvx framework allows for Loewner inequalities of the
form given in (5). For example, for two arbitrary b × dim matrices X and Y and a Hermitian b × b
matrix B, X*E1*ctranspose(X) - 5*Y*E2*ctranspose(Y) <= B would be a legal syntax for
a constraint. You can also use loops to generate the objective function or to declare constraints. For
example, you might want to write a code similar to the one below, if you want to state the constraint
that

∑n
k=1Ek should be positive semi-definite.

Finally, in line 11, we state that E1 + E2 = 1. Finally, by the command cvx_end, the calculation
starts. The optimal value is then stored in the variable cvx_optval and the declared matrices are

4

then ordinary Matlab matrices such that the optimum is attained.

3 Multiple state discrimination via semidefinite programming

This task is a generalization of the previous introductory example. Given a set of density matrices
{ρi}Ni=1 and a quantum state ρ, we are promised that ρ is in each state ρi with probability pi, so that
N∑
i=1

pi = 1. The aim of this query is to successfully identify in which of the states ρi, lies the state ρ.

This problem is known as the quantum hypothesis testing.

Let N denote the number of quantum states we consider, i.e., for each 1 ≤ i ≤ N , ρi ∈ Md×d(C) with
ρi ≥ 0 and tr[ρi] = 1. Moreover, assume that we are given a probability distribution {pi}Ni=1. Following

the idea presented in the introductory example, the goal here is to optimize the value of
N∑
i=1

pi tr[ρiEi]

over POVMs (Positive-Operator Valued Measures) {Ei}Ni=1, i.e., Ei ≥ 0 for i ∈ {1, 2, . . . N} and
N∑
i=1

Ei = 1.

Exercise 2: N = 3 and pure states

Assume that we consider three quantum states ρi, i.e. N = 3, that are pure and orthonormal to each
other. Write down and justify the best POVM you can choose.

Exercise 3: State discrimination via SDP

Write a program that computes the following supremum:

sup
{Ei}Ni=1 POVM

N∑
i=1

pi tr[ρiEi]. (6)

using an SDP.

Given the previous ρi and pi for i ∈ {1, . . . , N}, the first approximation of a POVM would be defined

by Ēi = pi ρi, for all i. However, this is not a POVM because S =
N∑
i=1

Ēi ̸= 1 (check that tr[S] = 1).

Exercise 4: Pretty good measurement

For every i ∈ {1, . . . , N}, define Ei := S−1/2 pi ρi S
−1/2 + 1

N (1 − S−1/2SS−1/2). Show that Ei is a
POVM (There is a general way to give a sort-of-inverse for all matrices, even if they are not square or
of full rank: Moore-Penrose pseudoinverse).

5

Exercise 5: N = 3 and, the optimal POVM is not the pretty good measurement

Consider again the case N = 3, the following three Hermitian matrices:

ρ1 :=

(
1 0
0 0

)
ρ2 :=

(
1/2 0
0 1/2

)
ρ3 :=

(
0 0
0 1

)
(7)

and the probabilities p1 = p2 = p/2 and p3 = 1 − p. Show that the optimal POVM is not the pretty
good measurement. Furthermore, compare the probability of success while using the optimal POVM
with the one of the pretty good measurement, in a graph.

Hint: It might be hard to find an analytical solution to this exercise, so in order to find the graph, you
need to solve an SDP for different values of p.

References

[1] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[2] L. Vandenbeghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49–95, link , 1996.

6

http://stanford.edu/~boyd/papers/pdf/semidef_prog.pdf

	Introduction to semidefinite programs
	How to solve an SDP with MATLAB
	Multiple state discrimination via semidefinite programming

