Multiple state discrimination via semidefinite programming

Some background on Semidefinite programming

John Watrous' notes for the course Semidefinite Programming in Quantum Information, Lectures.
CVX package for MATLAB
It can be downloaded from here, and there is an introductory video from Stephen Boyd on how to use it here,

The aim of this project is to familiarize ourselves with optimization techniques that have a wide range of applications in quantum information theory and beyond. As a main tool, we use semidefinite programs (SDP), which are a special case of the more general class of convex optimization problems. The nice property of SDPs is that, although the theory underlying the algorithms to solve these optimization problems is non-trivial (see [1, 2] as an example), there exist robust implementations of these algorithms that do not require knowledge about the underlying algorithms (except for highly complex problems). Thus, the only non-trivial problem is to recognize that the problem at hand is an SDP and then to use the provided software packages properly.

1 Introduction to semidefinite programs

In this section, you will learn what an SDP is. We will start with an example from quantum information theory. Suppose you have some quantum device, which outputs a quantum system $\rho_{\text {? }}$. The device is set in such a way that the output system is described by a density matrix ρ_{1} with probability p and it is described by ρ_{2} with probability $1-p$. You have this system at your disposal and you should decide if the system is described by ρ_{1} or ρ_{2}. Since ρ_{1} and ρ_{2} need not be orthogonal, you cannot decide this problem with certainty. The best you can do is to perform a measurement on the system and guess the state with the help of the information obtained via the measurement. Of course, you want to maximize the probability of guessing right. The probability of guessing right is given by the product rule as

$$
\begin{align*}
P_{\text {succ }} & =\mathbb{P}\left(\text { guess } \rho_{1} \mid \rho_{?}=\rho_{1}\right) \mathbb{P}\left(\rho_{?}=\rho_{1}\right)+\mathbb{P}\left(\text { guess } \rho_{2} \mid \rho_{?}=\rho_{2}\right) \mathbb{P}\left(\rho_{?}=\rho_{2}\right) \tag{1}\\
& =p \mathbb{P}\left(\text { guess } \rho_{1} \mid \rho_{?}=\rho_{1}\right)+(1-p) \mathbb{P}\left(\text { guess } \rho_{2} \mid \rho_{?}=\rho_{2}\right) . \tag{2}
\end{align*}
$$

Since you decide, based on your measurement outcome, between two hypotheses, it suffices to have a measurement with two possible outcomes. Remember that the most general description of measurement is given by a positive operator valued measure (POVM). For the case of a measurement with two outcomes, such a POVM is fully described by two effect operators E_{1} and E_{2}. In order to be a valid choice, E_{1} and E_{2} have to satisfy the following relations:

$$
\begin{equation*}
E_{1} \geq 0, \quad E_{2} \geq 0, \quad E_{1}+E_{2}=\mathbb{1}, \tag{3}
\end{equation*}
$$

where $\mathbb{1}$ denotes the identity matrix. W.l.o.g, by Born's rule, we then have that $\mathbb{P}\left(\right.$ guess $\left.\rho_{1} \mid \rho_{\text {? }}=\rho_{1}\right)=$ $\operatorname{tr}\left[E_{1} \rho_{1}\right]$ and $\mathbb{P}\left(\right.$ guess $\left.\rho_{2} \mid \rho_{?}=\rho_{2}\right) \mathbb{P}\left(\rho_{?}=\rho_{2}\right)=\operatorname{tr}\left[E_{2} \rho_{2}\right]$. Hence, in order to choose the POVM such that $P_{\text {succ }}$ is maximized, you encounter the following optimization problem:

$$
\begin{align*}
\text { maximize: } & p \operatorname{tr}\left[E_{1} \rho_{1}\right]+(1-p) \operatorname{tr}\left[E_{2} \rho_{2}\right] \\
\text { subject to: } & E_{1}+E_{2}=\mathbb{1} \tag{4}\\
& E_{1} \geq 0, E_{2} \geq 0
\end{align*}
$$

The optimization problem (4) is in the form of an SDP. More specifically, it is an optimization over Hermitian matrices with linear objective function, linear equality constraints and linear constraints that require that some matrix is positive semidefinite. For a general SDP, we simply allow for more than two variables, and more linear equality and inequality constraints.

Definition. 1.1. An SDP is an optimization problem of the following form

$$
\begin{array}{rc}
\text { minimize/maximize: } & f\left(E_{1}, E_{2}, \ldots, E_{N}\right) \\
\text { subject to: } & g_{1}\left(E_{1}, E_{2}, \ldots, E_{N}\right)=A_{1} \\
& \vdots \\
& g_{M}\left(E_{1}, E_{2}, \ldots, E_{N}\right)=A_{M} \\
& h_{1}\left(E_{1}, E_{2}, \ldots, E_{N}\right) \leq B_{1} \\
& \vdots \\
& h_{K}\left(E_{1}, E_{2}, \ldots, E_{N}\right) \leq B_{K} \\
& E_{1} \in H_{d_{1}}, E_{2} \in H_{d_{2}}, \ldots, E_{N} \in H_{d_{N}}
\end{array}
$$

To specify such an SDP we need positive integers $d_{1}, d_{2}, \ldots d_{N}, a_{1}, a_{2}, \ldots a_{M}, b_{1}, b_{2}, \ldots b_{K}$; Hermitian matrices $A_{1}, A_{2}, \ldots, A_{M}, B_{1}, B_{2}, \ldots, B_{K}$, with $A_{m} \in H_{a_{m}}$ and $B_{k} \in H_{b_{k}}$ and linear maps $f, g_{1}, g_{2}, \ldots, g_{M}, h_{1}, h_{2}, \ldots, h_{K}$, with the following signatures $f: \times_{n=1}^{N} H_{d_{n}} \rightarrow \mathbb{R}, g_{m}: \times_{n=1}^{N} H_{d_{n}} \rightarrow$ $H_{a_{m}}$ and $h_{k}: \times_{n=1}^{N} H_{d_{n}} \rightarrow H_{b_{k}}$.

Remark. 1.

1) One can replace the equality constraints by two inequality constraints. Furthermore, all inequality constraints can be combined into one function $\times_{n=1}^{N} H_{d_{n}} \rightarrow X_{k=1}^{K} H_{b_{k}}$. Hence there is some redundancy in the definition above.
2) It follows from the Riesz-representation theorem that f can be written in the form $f\left(E_{1}, E_{2}, \ldots, E_{N}\right)=$ $\sum_{n=1}^{N} \operatorname{tr}\left[F_{n} E_{n}\right]$, for some $F_{n} \in H_{d_{n}}$.
3) Valid constraints include

- $E_{1} \geq 0$,
- $E_{1}-E_{2}+4 E_{5}=A$,
- $X E_{1} X^{*}-5 Y E_{1} Y^{*}+Z E_{2} Z^{*} \leq 0$,
- $\operatorname{tr}\left[E_{1}\right]=1$,
where X, Y, Z are (not necessarily Hermitian) matrices and it is assumed that the dimensions match, so that the expressions above make sense.

4) It can be shown that every constraint function can be written in the following form

$$
\begin{equation*}
g\left(E_{1}, E_{2}, \ldots, E_{N}\right)=\sum_{n=1}^{N} \sum_{i=1}^{L_{n}} \sigma_{n, i} K_{n, i} E_{n} K_{n, i}^{*}, \tag{5}
\end{equation*}
$$

where $K_{n, i}$ is a $a \times d_{n}$ matrix (for some $a \in \mathbb{N}$), $\sigma_{n, i}$ are real coefficients and $L_{n} \in \mathbb{N}$.

Exercise 1: Trace-norm

The optimal value of (4] has an expression in terms of the trace norm $\|\cdot\|_{1}:=\operatorname{tr}[|\cdot|]$. Derive such an expression.

2 How to solve an SDP with MATLAB

In this section, you will learn how to use the cvx package in Matlab to solve SDPs. To install cvx in Matlab, download the package under this link. Unpack the package, open Matlab and navigate to the obtained folder. Then type cvx_setup. Your screen should now look like this:

Figure 1: Cvx package for Matlab.

It's also recommendable that you watch the cvx introduction video by Stephen Boyd, which you can find here. We are now ready to solve the first SDP in (4). The Matlab code in Figure 2 solves the problem.

We will go through this code line by line. In the first four lines, we initialize the variables that describe the problem. In our case, we try to discriminate between the maximally mixed state $\rho_{1}=$ $\frac{1}{2} \mathbb{1}$, which appears with probability $p=0.4$ and the state $\rho_{2}=|0\rangle\langle 0|$. A semi-definite program is described between the two lines cvx_begin and cvx_end. The expression sdp in line 5 tells cvx

```
```

Command Wind

```
```

Command Wind
l
l
3 rhol = [[.5, 0]; [0, .5]];
3 rhol = [[.5, 0]; [0, .5]];
4 rho2 = [[1, 0]; [0, 0]];
4 rho2 = [[1, 0]; [0, 0]];
5 cvx_begin sdp quiet
5 cvx_begin sdp quiet
6 variable El(dim,dim) hermitian;
6 variable El(dim,dim) hermitian;
7 variable E2(dim,dim) hermitian;
7 variable E2(dim,dim) hermitian;
8 maximize (real(p*trace(E1*rhol) + (1-p)*trace(E2*rho2)));
8 maximize (real(p*trace(E1*rhol) + (1-p)*trace(E2*rho2)));
| El >= 0;
| El >= 0;
11 El+E2 == eye(dim)
11 El+E2 == eye(dim)
12 cvx_end
12 cvx_end
>> cvx_optval
>> cvx_optval
cvx_optval = Optimal value
cvx_optval = Optimal value
>> El
>> El
El =
El =
0.0000 + 0.0000i 0.0000-0.0000i
0.0000 + 0.0000i 0.0000-0.0000i
0.0000+0.00001
0.0000+0.00001
>> E2
>> E2
E2=
E2=
1.0000+0.0000i -0.0000 +0.0000i
1.0000+0.0000i -0.0000 +0.0000i
-0.0000-0.0000i

```
    -0.0000-0.0000i 
```

Optimal value

```
                                    Optimal measurement operators
```

 Optimal measurement operators
 -0.0000-0.0000i 0.0000+0.0000i
 -0.0000-0.0000i 0.0000+0.0000i
 -
*

```
*
```

Figure 2: Matlab code to solve the SDP in (4).
that inequalities are meant in the Loewner sense and quiet suppresses the output of the protocol of the calculation. In lines 6 and 7 , we declare two variables, the $\operatorname{dim} \times \operatorname{dim}$ hermitian matrices E_{1} and E_{2} (these are the measurement operators). In the same way you can declare any number of matrices. You might want to declare $n \in \mathbb{N}$ Hermitian matrices of size $d \times d$. Then the syntax would be variable $\mathrm{E}(\mathrm{d}, \mathrm{d}, \mathrm{n})$ hermitian; and you can the access the k -th variable by $\mathrm{E}(:,:, \mathrm{k})$.

```
l
2
3
4
5
5
6
7
8
9
variable E(dim, dim, n) hermitian;
temp = zeros(dim,dim);
q
    temp = temp + E(:,:,k);
end
temp >= 0;
```

In lines 8 -11, we declare our problem, which is that we want to maximize the expression $p \operatorname{tr}\left[E_{1} \rho_{1}\right]+$ $(1-p) \operatorname{tr}\left[E_{2} \rho_{2}\right]$. Taking the real part of this expression is not necessary mathematically, since the expression is always linear. However, due to rounding errors the real part might be negligibly small, but non-zero (in which case cvx might output an error message). In lines 9 and 10 we demand that E_{1} and E_{2} are positive semi-definite. The cvx framework allows for Loewner inequalities of the form given in (5). For example, for two arbitrary $b \times \operatorname{dim}$ matrices X and Y and a Hermitian $b \times b$ matrix B, X^{*} E1*Ctranspose (X) - 5*Y*E2*ctranspose (Y) $<=$ B would be a legal syntax for a constraint. You can also use loops to generate the objective function or to declare constraints. For example, you might want to write a code similar to the one below, if you want to state the constraint that $\sum_{k=1}^{n} E_{k}$ should be positive semi-definite.

Finally, in line 11, we state that $E_{1}+E_{2}=\mathbb{1}$. Finally, by the command cvx_end, the calculation starts. The optimal value is then stored in the variable cvx_optval and the declared matrices are
then ordinary Matlab matrices such that the optimum is attained.

3 Multiple state discrimination via semidefinite programming

This task is a generalization of the previous introductory example. Given a set of density matrices $\left\{\rho_{i}\right\}_{i=1}^{N}$ and a quantum state ρ, we are promised that ρ is in each state ρ_{i} with probability p_{i}, so that $\sum_{i=1}^{N} p_{i}=1$. The aim of this query is to successfully identify in which of the states ρ_{i}, lies the state ρ. This problem is known as the quantum hypothesis testing.

Let N denote the number of quantum states we consider, i.e., for each $1 \leq i \leq N, \rho_{i} \in \mathcal{M}_{d \times d}(\mathbb{C})$ with $\rho_{i} \geq 0$ and $\operatorname{tr}\left[\rho_{i}\right]=1$. Moreover, assume that we are given a probability distribution $\left\{p_{i}\right\}_{i=1}^{N}$. Following the idea presented in the introductory example, the goal here is to optimize the value of $\sum_{i=1}^{N} p_{i} \operatorname{tr}\left[\rho_{i} E_{i}\right]$ over POVMs (Positive-Operator Valued Measures) $\left\{E_{i}\right\}_{i=1}^{N}$, i.e., $E_{i} \geq 0$ for $i \in\{1,2, \ldots N\}$ and $\sum_{i=1}^{N} E_{i}=\mathbb{1}$.

Exercise 2: $N=3$ and pure states

Assume that we consider three quantum states ρ_{i}, i.e. $N=3$, that are pure and orthonormal to each other. Write down and justify the best POVM you can choose.

Exercise 3: State discrimination via SDP

Write a program that computes the following supremum:

$$
\begin{equation*}
\sup _{\left\{E_{i}\right\}_{i=1}^{N} \operatorname{POVM}} \sum_{i=1}^{N} p_{i} \operatorname{tr}\left[\rho_{i} E_{i}\right] . \tag{6}
\end{equation*}
$$

using an SDP.

Given the previous ρ_{i} and p_{i} for $i \in\{1, \ldots, N\}$, the first approximation of a POVM would be defined by $\bar{E}_{i}=p_{i} \rho_{i}$, for all i. However, this is not a POVM because $S=\sum_{i=1}^{N} \bar{E}_{i} \neq \mathbb{1}$ (check that $\operatorname{tr}[S]=1$).

Exercise 4: Pretty good measurement

For every $i \in\{1, \ldots, N\}$, define $E_{i}:=S^{-1 / 2} p_{i} \rho_{i} S^{-1 / 2}+\frac{1}{N}\left(\mathbb{1}-S^{-1 / 2} S S^{-1 / 2}\right)$. Show that E_{i} is a POVM (There is a general way to give a sort-of-inverse for all matrices, even if they are not square or of full rank: Moore-Penrose pseudoinverse).

Exercise 5: $N=3$ and, the optimal POVM is not the pretty good measurement

Consider again the case $N=3$, the following three Hermitian matrices:

$$
\rho_{1}:=\left(\begin{array}{ll}
1 & 0 \tag{7}\\
0 & 0
\end{array}\right) \quad \rho_{2}:=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right) \quad \rho_{3}:=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

and the probabilities $p_{1}=p_{2}=p / 2$ and $p_{3}=1-p$. Show that the optimal POVM is not the pretty good measurement. Furthermore, compare the probability of success while using the optimal POVM with the one of the pretty good measurement, in a graph.

Hint: It might be hard to find an analytical solution to this exercise, so in order to find the graph, you need to solve an SDP for different values of p.

References

[1] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[2] L. Vandenbeghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49-95, Link, 1996.

