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Chapter 1

Introduction and Fundamental

Concepts

1.1 Scope of the course and Bibliography

In this course, we will study the transmission of information over a noisy quantum communication

channel. In particular, students will learn about quantum mechanics, entanglement, teleportation,

tomography, quantum estimation, hypothesis testing, and various capacity theorems involving

classical bits, qubits, and entangled bits. There will be a strong focus on entropy measures and

their application to numerous quantum tasks.

This course is intended for students of the Master in Mathematical Physics of the University

of Tübingen, but is open to anyone with some basic knowledge on mathematical analysis, linear

algebra, probability theory, as well as some interest on learning about the exciting world of quantum

information theory.

1.1.1 Bibliography

There is a plethora of references in the literature that concern the topics that we will discuss in

this course, such as Quantum Information Theory, Quantum Entropies and Applications, Shannon

Theory, Quantum Channels, etc. Below we include a short list with some of the main texts which

are frequently used in this community in courses of similar scope. Furthermore, we list as a

reference the current Lecture Notes, since they will contain a summary of the contents presented

in the lectures, as well as some complementary material/references in some parts. By no means

these Lecture Notes intend to replace any of the other texts, written by some of the main authors

in the quantum information community, and the students are encouraged to consult these texts to

complement their knowledge on the subject.

The short selection of manuscripts has been done accordingly to the contents intended for this

course. The lectures, and therefore these notes, have been prepared consulting these texts, as well

as some others, and they are properly referenced in this respect. More specifically, most of the

contents of Chapter 1 have been extracted from the well-known books of Nielsen and Chuang, as

well as Wilde; Chapter 3 is inspired in the Lecture Notes by Wolf in quantum channels; Chapters 4

and ?? use as base materials the texts of Wilde and Carlen; and Chapter ?? is inspired in various

parts of all the texts mentioned below. Some other books/notes used for the construction of these

notes will be properly referenced in the main text.

1. Lectures Notes

3



4 CHAPTER 1. INTRODUCTION AND FUNDAMENTAL CONCEPTS

2. Nielsen-Chuang, ”Quantum Computation and Quantum Information” [11]

3. Wilde, ”From Classical to Quantum Shannon Theory” [23]

4. Watrous, ”The Theory of Quantum Information” [22]

5. Carlen, ”Trace Inequalities and Quantum Entropy” [5]

6. Wolf, ”Quantum Channels and Operations. Guided Tour” [24]

1.2 What is Quantum Information?

The scientific field of Quantum Information has a lot of different facets and encompasses the

field of mathematics, physics and computer science. Its main questions concern the control of

quantum systems. I.e. can we construct and manipulate complex quantum systems? And if so,

what are the scientific and technological applications? It is important to remark that the field

of Quantum Information Science does not study the frontier of short (subnuclear) distances or

long (cosmological) distances, but rather the frontier of highly complex quantum systems, what is

usually known as the entanglement frontier.

Compared to the classical world that we know, as it is the world we experience every day,

the quantum world exhibit behaviours that are counter intuitive to our classical understanding of

the world. These additional properties, which will be discussed in detail throughout the course,

provide quantum systems with, in a sense, more complex and richer behaviour, meaning that we can

expect to simulate a classical system using a quantum system, and it is generally believed that this

is not possible the other way around (although it still remains an unproven conjecture). However,

quantum systems present the phenomenon of decoherence, as opposed to classical systems, and this

effect tends to destroy information very fast and, thus, quantum systems end up losing their special

properties after some time and behaving like classical ones. It is a major problem to determine

how hard solving the problem arising from decoherence is and whether we will be able to overcome

it with the current techniques of science. Nevertheless, the special properties of quantum systems

torched a large research effort whose main goal is to control the quantum behaviour of scalable

quantum systems and achieve the ”quantum advantage”, which will allow us to prepare and control

complex quantum systems that behave in ways that cannot be predicted using digital computers.

For that, we will need to find what quantum tasks are feasible and which quantum problems are

hard to simulate classically.

1.2.0.1 Shor’s factoring algorithm

To give an example of the theoretically expected improvement in behaviour of a quantum computer

with respect to a classical one, let us present some basic calculations on the required to factorize a

certain number with both devices. For that, we make use of one of the first breakthroughs in the

first steps of the field of Quantum Computing in the past century, namely the algorithm devised by

Shor to factor numbers in their prime components. We are not going to discuss such an algorithm

in detail in teh current text, but we strongly recommend the avid reader to consult the original

article [16] as well as the references [25, 20].

Assume that we want to factor a number into its two prime factors n = p1 ·p2. Some theoretical

computations show that we have the following comparison of computational time using Shor’s

algorithm on a quantum computer and a classical algorithm on a classical computer:
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Numbers Classical computer Quantum computer

193 digits 30 CPU years 0.1 seconds

500 digits 1012 CPU years 2 seconds

Moreover, as a hint of the meaning of the previous table in an impactful case, the energy consump-

tion to crack RSA-encryption would demand 106 terawatt hours for the classical and 10 megawatt

hours for a quantum computer.1

1.2.1 Emergence of Quantum Information Science

There were several coetaneous facts that could be considered as the seed for the creation of the

new field of Quantum Information Science. Some of the most remarkable facts which gave rise to

this field are:

• A genuine concern regarding the true value of Moore’s law in the coming years. This concern

was based on the physical limit of computer chips, i.e. the space per bit cannot be shrunk

indefinitely but is limited by the physical properties of the chip material (diameter of atoms,

etc.).

• At a similar time, it was the first moment in history in which researchers in labs managed to

control ”single quantum systems”, isolating them from systems with many quantum systems.

• Moreover, there was also an increase in the recognition of the computational power generated

by quantum mechanics, which might allow for the design of computational devices based on

the laws of such a field.

• Finally, another motivating aspect was the relevance of certain implications of quantum

mechanics in practical aspects for society, such as to the security of public key cryptography.

1.2.2 Quantum Information vs. Classical Information

To conclude this short introduction to Quantum Information Theory, let us briefly mention the

main differences with respect to the realm of Classical Information Theory. The three key properties

of a quantum system compared to a classical system are the following ones:

• (True) randomness. Note that, even though we sometimes discuss some processes in

classical mechanics as random ones, they are frequently just ”pseudo-random”, in the sense

that their outcome might be predetermined, even if we do not know it in advance (and

that is why we take it to be random). However, clicks in a Geiger counter, for instance,

are intrinsically random, not pseudo-random, as, at every instant of time, there is always

a certain probability of having more clicks in the next second or not having them, but the

outcome is not predetermined in any way.

• Uncertainty. If we consider two operators A and B which do not commute, this means that

measuring A influences the outcome of a subsequent measurement of B and vice versa.

• Entanglement. This property can be summarized as ”the whole is more definite than the

parts”. This means that even knowing a joint system AB (pure), the (mixed) state of A may

be highly uncertain.

All these terms will be further defined and formalized as we proceed with the course.

1This estimate stems from about 10 years ago.
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1.3 Classical Information Theory: A Brief Overview

1.3.0.1 Starting point

In the following we are trying to understand Shannon’s approach to classical information. He

started with the idea formalised by the theorem of Bayes (1763). This theorem phrased the

idea that probabilities depend on what one knows, meaning that acquiring additional information

modifies the probabilities. Almost 200 years later, Claude Shannon (1916 - 2001) took this as

basis and framed the term information. He did this in a series of papers and works from the year

1948 onward [14, 15], starting with one of the most influential papers ever written, called ”The

mathematical approach to communication”. In this paper he for example introduced the Shannon

Entropy over a probability distribution, which nowadays appears various different contexts

S(p) = −
∑
i∈I

pi log(pi). (1.3.1)

It is noteworthy that this quantity actually coincides with Boltzmann’s formula of entropy.

Note that Bayes constructed his theory based on the idea that probabilities are not absolute, but

rather depend on the available information, whereas Shannon framed the concept of information as

a function that is precisely defined using a probability distribution. Hence, any set of probabilities

can be associated with a quantity of information. Reversing this we get that every probabilistic

phenomenon has an associated information theory and since quantum theory is a probabilistic

theory the existence of a quantum information theoretic field is only natural.

1.3.0.2 Probabilities and conditional probabilities

Shannon frames the notion of ”content of information” using probability theory and the concept

of a probabilistic ensemble. This limits the use of such a notion to systems that can be described

by random variables. Let us collect below some basic notions and properties concerning random

variables, which will be of use in the next pages of these notes.

Definition. 1.3.1 (Ensemble)

An ensemble is given by a tuple X = (x,AX , PX) with

• x: the value of the random variable,

• AX : the set of possible values that the random variable can take (sample space),

• PX : the probability distribution.

The probability distribution is a function from F a σ-algebra over AX , called event space, to the

reals, i.e.

PX : F → R (1.3.2)

satisfying the following properties:

1. ∀A ∈ F : 1 ≥ P (A) ≥ 0.

2. For a disjoint family of sets {Ai}i it holds that

P
(⋃

i

Ai

)
=
∑
i

P (Ai). (1.3.3)

3. P (AX) = 1
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In the case that AX is finite we usually have that F = P(AX), the power set. We then also leave

F implicit and just assume it to be the power set of AX . Abusing notation we then often write

for a ∈ Ax, PX(a) or P (X = a) and mean PX({a}), or if the elements of AX are enumerated we

might write pi = p(ai) = PX(ai) = PX({ai}).

Example. Modelling the tossing of a coin with the outcomes heads (h) and tails (t), results in

AX = {h, t}, F = {{h}, {t}} and P ({h}) = 1/2 = P ({t}).

Definition. 1.3.2 (Joint probability distribution)

These distributions describe the joint outcome of two events. We now have that AX = AA × AB

is a set of tuples. Apart from that the situation is completely analogous. We denote (again in the

situation that AA and AB are finite and enumerated)

PX({ai, bj}) = P (X = (A,B) = (ai, bj))

= P (A = ai, B = bj)

= P (ai, bj).

(1.3.4)

We have that the joint distribution fulfills the following properties:

• In the case that they are independent, we have that P (ai, bj) = P (ai)P (bj) (this is actually

the defining property of independence).

• It holds that the marginal distributions can be recovered from the joint distribution by

P (ai) =
∑
j

P (ai, bj) P (bj) =
∑
i

P (ai, bj) (1.3.5)

• We now frame the concept of conditional probability using Bayes rule. We namely have

P (ai, bj) = P (bj |ai)P (ai) = P (ai|bj)P (bj). (1.3.6)

• From the last point we immediately get the Bayes theorem:

P (ai|bj) =
P (bj |ai)P (ai)

P (bj)
. (1.3.7)

1.3.0.3 Entropy and information

The link between entropy and information is rather subtle and beautiful. In their book from 1949

[15], Shannon and Weaver gave a description of this notion using axioms that should be satisfied

by it. As reproducing this description would require some effort that goes beyond the scope of this

course, we will instead roughly sketch the ideas behind their formalization in the following: Let A

be a single event with the possible outcomes {ai}i

1. Intuitively, if the outcome of the event is almost certain, e.g. A = a0 there is no information

present when it happens. If, on the other hand, A = a0 is unlikely, then the information

content of this event happening is very high. Hence, our entropy function h should have the

property that h(P (ai)) increases as P (ai) decreases.

2. In the case that the PX = P(A,B) is a joint distribution, with, however, the events A and B

unrelated, i.e. P (ai, bj) = P (ai)P (bj), the information provided by each of the events should

add up, namely the following should hold:

h[P (ai, bj)] = h[P (ai)P (bj)] = h[P (ai)] + h[P (bj)] (1.3.8)



8 CHAPTER 1. INTRODUCTION AND FUNDAMENTAL CONCEPTS

3. The function should be positive.

The natural candidate for a function representing the information that satisfies the previous con-

ditions for a specific outcome is the minus logarithm, i.e.

h(P (ai)) := −K logP (ai) ,

where K is a positive constant to be determined later. However, note that we want to define

”information” as the weighted average of the previous h for every possible outcome, namely:

H := −K
∑
i

P (ai) logP (ai)

= −
∑
i

P (ai) log2 P (ai).
(1.3.9)

in the base two logarithm. This is the formula Shannon gave and we call the unit of this entropy

bits. If instead we consider the natural logarithm, i.e.

He := −
∑
i

P (ai) logP (ai) (1.3.10)

the unit is called nats. The transformation formula is just He = log(2)H, giving us that 1 nat =

log(2) bits.

Example. One example would be the binary entropy (see Figure 1.1). In this case AX = {0, 1}
and PX = {p, 1− p}. The entropy then turns out to be

H(2) = p log2
1

p
+ (1− p) log2

1

1− p
. (1.3.11)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

H
(p
)

fig. 1.1: The binary entropy.

The binary entropy obviously attains its maximum if p = 1−p, i.e. the probability distribution

is uniform.

It is noteworthy that the discovery we made in the example with the binary entropy, actually

also applies to every other random variable. This means that the maximum of the entropy is

reached if the probability distribution is uniform.

Our goal is now to discuss the more general case in which we have joint variables, i.e. a system

composed of two subsystems with two variables (x,AX , PX) and (y,AY , PY ) respectively. We then

define

Definition. 1.3.3 (Joint entropy, Mutual information, Conditional entropy)

Let two random variables X,Y be given and AX and AY finite and enumerated and P the joint

distribution of X and Y . Then
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• The joint entropy is given by

H(X,Y ) := −
∑
i,j

P (xi, yj) logP (xi, yj); (1.3.12)

• The marginal entropies are given by

H(X) = −
∑
i,j

P (xi, yj) log
∑
k

P (xi, yk),

H(Y ) = −
∑
i,j

P (xi, yj) log
∑
k

P (xk, yj);
(1.3.13)

• The mutual information is defined as

I(X : Y ) = H(X) +H(Y )−H(X,Y ). (1.3.14)

It measures how much two random variables are codependent and has the following properties

– I(X : Y ) ≥ 0

– I(X : Y ) = 0 ⇔ P (xi, xj) = P (xi)P (xj) ∀i, j.

Further it provides a bound on the rate at which we can communicate.

1.3.0.4 Shannon entropy and Boltzmann entropy

We have already stated that the Shannon entropy coincides with Boltzmann’s concept of entropy

and want to elaborate on that further.

Note that we obtain the Boltzmann distribution by maximizing the information subject to a

constraint on the average energy. Considering a system which is in thermal equilibrium with its

environment we, in the classical case, have an continuous energy spectrum, while in the discrete

case the energy levels are discrete. As we are more interested in the quantum case, we limit our

calculations to that case.

What we now want to do is to determine the probability pi that the system actually has energy

Ei and are doing so by maximizing information subject to the mean energy being fixed. Using

Lagrange’s method:

maxHe = max
(
−
∑
i

pi log(pi)
)

subject to
∑
i

piEi = Ẽi,
∑
i

pi = 1 (1.3.15)

This gives us

H̃ = He + λ
(
1−

∑
i

pi

)
+ β

(
Ẽ −

∑
i

piEi

)
(1.3.16)

and

dH̃ =
∑
i

(− log(pi)− 1− λ− βEi)dpi. (1.3.17)

After some simple manipulations we obtain

pi = e−(1+λ)e−βEi (1.3.18)

and imposing the constraints:

pi =
exp (−Ei/(kBT )∑
j exp (−Ej/(kBT ))

. (1.3.19)
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1.3.0.5 Communication theory

As mentioned earlier in this section, Shannon introduced his information theory as the Mathemat-

ical Theory of Communication. Once we have set some preliminary concepts and properties in the

field of Classical Information Theory, we are ready to describe how classical communication takes

place. For that, we can sketch a scheme with the different elements of a classical communication

channel, as done in figure 1.2:

Alice Bob

Information

source

Choose

message

Transmitter

Produce

signal

Noise

Receiver

Turn signal

into message

Destination

fig. 1.2: A scheme of classical communication through a noisy channel.

This simple scheme raises two fundamental questions, which will be addressed in the next pages,

namely:

1. How much can a message be ”compressed”?

2. Which is the best rate of reliable communication through a noisy channel?

The answers to those questions were given by Shannon through proving two very important the-

orems. First the ”Noiseless Shannon theorem” and second the ”Noisy Shannon theorem”. In the

following we will visit both of them, however, only prove the first one. For the second one we give

some intuition but leave the proof to the several sources that exist on this topic. In any case, in

the quantum part we will present a complete proof of the analogous result.

Before we dive into the math, however, we want to make the first question about the necessity

for compressing a message more illustrative on an example.

Example. Let {a, b, c, d} be an alphabet that we want to use to send a message which we will

subsequently try to compress. The appearance probabilities of every letter of the alphabet in a

message are:

P ({a}) = 1/2, P ({b}) = 1/8, P ({c}) = 1/4, P ({d}) = 1/8. (1.3.20)

Our goal is now to encode this input using bits, as only bits can be transmitted in our communi-

cation channel.

• Attempt 1. Assume we encode as follows

a→ 00, b→ 01,

c→ 10, d→ 11.
(1.3.21)

Then the expected length of a message is 2N bits. We have, however, not taken the proba-

bilities into account!

• Attempt 2. Since we expect a to appear more frequently than any other letter, we can

associate to it a ”shorter” code in terms of number of bits. Assume now that we encode

a→ 0, b→ 110,

c→ 10, d→ 111,
(1.3.22)
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then the expected length of a message is

N(
1

2
· 1 + 1

8
· 3 + 1

4
· 2 + 1

8
· 3) = 7

4
N (1.3.23)

hence only 1.75 bits.

One could wonder whether there is another way to further compress the message so that its

expected length is even smaller. However, we will see below that this is not the case, as Shannon’s

noiseless theorem states that the optimal rate of compression is given by the Shannon entropy of

the distribution, and in the example above its value is exactly 1.75.

1.3.0.6 Source coding theorems, informal version

In the context of the theorem, let (X1, X2, . . . , Xn) = Xn be a sequence of n binary i.i.d. random

variables. We denote a single outcome by

(x1, . . . , xn) = xn, (1.3.24)

and the set of all possible outcomes by

AXn = {(x1, . . . , xn) : xi ∈ {0, 1} ∀i = 1, . . . n}. (1.3.25)

Then, as we will show in the next subsections, the source coding theorem proves that there exists

a subset SXn ⊆ AXn , called a ”typical set”, such that almost all information in AXn is contained

in SXn . The typical set has a total of 2nH elements. Informally, this theorem is stated as follows.

Theorem. 1.3.4 (Source coding, informal version) Consider n binary i.i.d. random vari-

ables, each with entropy H. Then, they can be compressed into more than 2nH bits with negligible

risk of losing information.

Conversely, if they are compressed into fewer than nH bit, virtually certain some information

will be lost.

1.3.1 Shannon’s noiseless coding theorem

Let a sequence of n i.i.d. random variables (X1, . . . , Xn) be given, which take on letters in a

finite alphabet of symbols {a1, . . . , ak}. Let further the probability distribution of X be given by

(px = p(ax))
k
x=1.

Example. Let X be a binary random variable with an alphabet {0, 1}, p(0) = 1−p and p(1) = p

with 0 ≤ p ≤ 1. Then the Shannon entropy of X is given by

H(X) = −
∑

px log2(px) (1.3.26)

Exercise. Show that 0 ≤ H(X) ≤ log2(K).

We now consider a long message xn = x1 . . . xn and ask ourselves the question: Can we compress

this message to a shorter string of letters with essentially the same information? The answer to

this question will be given by Shannon’s first theorem.

But before we dive into that, we have to establish some foundations. First, the protocol we are

going to use can be schematically reproduced as in Figure 1.3. In such a scheme, we appreciate

that Alice encodes n bits as a block with an encoder E , from which the output is a codeword with

less than n bits. Next, this codeword is transmitted over noiseless bit channels and Bob receives

them. He further decodes it using a decoder D, (hopefully) obtaining the original sequence that

Alice sent.



12 CHAPTER 1. INTRODUCTION AND FUNDAMENTAL CONCEPTS

x1
x2

xn−1
xn

...

id

id

id

...

x1
x2

xn−1
xn

...E D

fig. 1.3: Schematic representation of a classical communication channel between Alice and Bob

without any noise.

Once the protocol is introduced, we need some further notions and technical results before

proceeding to the main result of this section. First, we notice that, by independence,

p(x1 . . . xn) = p(x1) . . . p(xn) (1.3.27)

Next, we need to introduce the notion of typical strings. As the name suggests, such strings will

be the ones that most typically appear and, therefore, the ones to be considered in the asymptotic

limit with n.

Definition. 1.3.5 (ε-typical string)

For every ε > 0, the string of source symbols x1 . . . xn is called ε-typical, if, and only if,

2−n(H(X)+ε) ≤ p(x1 . . . xn) ≤ 2−n(H(X)−ε) , (1.3.28)

which can be equivalently written as∣∣∣∣ 1n log2

(
1

p(x1 . . . xn)

)
−H(X)

∣∣∣∣ ≤ ε . (1.3.29)

We introduce the notation T (n, ε) for the set of ε-typical sequences of length n.

Moreover, the proof of the main result of this section, we will need to previously introduce

and prove three lemmas. The first one of them essentially states that, in the asymptotic limit, a

sequence is typical with high probability.

Lemma. 1.3.6 Given ε > 0, for every δ > 0 and for large enough n, the probability that a

sequence is ε-typical is, at least, 1− δ.

Proof. Let {X1, . . . , Xn} be i.i.d. random variables. Then we find that

{− log p(X1), . . . ,− log p(Xn)} (1.3.30)

are also i.i.d. random variables. We then find that

− 1

n

n∑
l=1

log(p(Xl)) (1.3.31)

is a random variable. By the law of large numbers we find that, for every ε > 0 and δ > 0, the

following holds for n large enough:

P
(∣∣∣− 1

n

n∑
l=1

log2 p(Xl) +

k∑
x=1

px log2 px

∣∣∣ ≤ ε) ≥ 1− δ (1.3.32)
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If we use that −
n∑

l=1

log2 p(Xl) = − log2
n∏

l=1

p(Xl) = − log2 p(X1, . . . , Xn) and

−
k∑

x=1
px log2 px = H(X), we obtain

P
(∣∣∣ 1
n
log2

1

p(X1, . . . , Xn)
−H(X)

∣∣∣ ≤ ε) ≥ 1− δ , (1.3.33)

concluding thus the proof.

Next, we give an approximation that yields the size of the set of typical sequences in the

asymptotic limit with n.

Lemma. 1.3.7 Given ε > 0 and δ > 0, for large enough n the following inequality holds:

(1− δ)2n(H(X)−ε) ≤ |T (n, ε)| ≤ 2n(H(x)+ε) . (1.3.34)

Proof. a) For the second inequality, we have that

1 ≥
∑

xn∈T (n,ε)

p(xn) ≥
∑

xn∈T (n,ε)

2−n(H(X)+ε) = |T (n, ε)|2−n(H(X)+ε) , (1.3.35)

where the first inequality comes from the fact that we are adding up probabilities and the

second one the definition of ε-typical sets. This gives us immediately that

|T (n, ε)| ≤ 2n(H(X)+ε). (1.3.36)

b) For the lower bound of |T (n, ε)|, we use that

1− δ ≤
∑

xn∈T (n,ε)

p(xn) ≤
∑

xn∈T (n,ε)

2−n(H(X)−ε) = |T (n, ε)|2−n(H(X)−ε), (1.3.37)

where the first inequality follows from Lemma 1.3.6 and the second one from the definition

of ε-typical sets again. Hence, we can conclude that

|T (n, ε)| ≥ (1− δ)2n(H(X)−ε). (1.3.38)

Note that the content of the previous lemma can be graphically see in Figure 1.4. Finally, we

prove that the probability that sequences belong to a set of size smaller than 2nH(X) is negligible

in the asymptotic limit with n.

Lemma. 1.3.8 Let R < H(X). We consider a set S(n) of size smaller or equal to 2nR composed

of length n sequences from the source. Then for all δ > 0, for n large enough the following holds:∑
xn∈S(n)

p(xn) ≤ δ. (1.3.39)

Proof. First, we fix ε > 0 such that R < H(X)− δ and 0 < ε < δ
2 . Then, we can split S(n)) into

its typical and atypical sequences, namely

S(n)

Styp(n)

Satyp(n)
(1.3.40)
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Typical

sequences

All
sequences

2nH(X)
2n log|X|

fig. 1.4: A schematic representation of the fact that the set of typical sequences is much smaller

than the set of all sequences in general. They have approximately the same size only when the

entropy H(X) is equal to log |X|, and in such a case the random variable X is uniformly

distributed.

For the atypical sequences, we know that P (xn ∈ Satyp(n)) ≤ δ
2 by Lemma 1.3.6. It is only

remaining to bound Styp(n). For that, first note that |Styp(n)| ≤ 2nR, and each sequence in this

set has probability smaller or equal to 2−n(H(X)−ε) by assumption. This gives us∑
xn∈Styp(n)

p(xn) ≤ 2nR2−n(H(X)−ε) = 2−n(H(X)−R−ε) n→∞−→ 0. (1.3.41)

We can, hence, conclude that∑
xn∈S(n)

p(xn) =
∑

xn∈Styp(n)

p(xn) +
∑

xn∈Satyp(n)

p(xn) ≤ 2−n(H(X)−R−ε) +
δ

2
≤ δ, (1.3.42)

if one chooses n large enough.

Before introducing the main theorem of this section, we need to introduce some last concepts,

which have to do with the compression and decompression of information throughout the commu-

nication channel (see Figure 1.3).

Definition. 1.3.9

A compression scheme of rate R is a map

xn = (x1, . . . , xn) 7→ Cn(xn) ≡ Cn(x1 . . . xn) (1.3.43)

producing a bit string of length ⌈nR⌉.
A decompression scheme of rate R maps the bit string back to n letters

Dn(Cn(xn)) = x̃n (1.3.44)

A compression-decompression scheme is reliable if

P (Dn(Cn(xn)) = xn)
n→∞−→ 1 (1.3.45)

Now we are in position to state and prove the main result of this section, namely the best rate

of compression for a message sent by a communication channel without noise.

Theorem. 1.3.10 (Shannon’s noiseless coding theorem) Let {X1, . . . , Xn} be i.i.d. random
variables with entropy rate H(X). Then
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1. If R > H(X), there exists a reliable compression-decompression scheme of rate R for the

source.

2. If R < H(X), any compression scheme of rate R will not be reliable.

Proof. 1. Let R > H(X). We fix ε > 0 such that R > H(X) + ε. Now we consider T (n, ε). By

Lemma. 1.3.7, we have

|T (n, ε)| ≤ 2n(H(X)+ε) < 2nR (1.3.46)

and P (xn ∈ T (n, ε)) ≥ 1 − δ by Lemma. 1.3.6. Then we have that {y1, . . . , yk} ⊆ T (n, ε),

k < 2nR where y1, . . . , yk is just enumeration by nR bit strings. I.e.

y1 = (0, . . . , 0)

y2 = (1, 0, . . . , 0)

...

(1.3.47)

all with nR entries and a 1 in one entry and zeros in all others. Note that, in general,

k < 2nR, and thus yk ̸= (1, . . . , 1, 1) in general. In the rest of the proof of this statement, we

are going to construct the compression-decompression scheme using the previous enumeration

of T (n, ε). First, the coding scheme is constructed as

xn 7→ Cn(xn) =


yj if xn is ε-typical

(corresponding yj representation)

y1 if xn is ε-atypical

(1.3.48)

Note that the choice of the bit string to which we map the atypical sequences (above y1)

is not important; we just map them all to the same string for simplicity. Moreover, the

decoding scheme is defined in the following way:

yj 7→ Dn(yj) =


xn if j ≤ K

(yj and xn corresponding message)

x1 . . . x1 if j > K

(1.3.49)

In this way, it is clear that we have defined a bijection over the typical sequences. More

specifically, for any xn ∈ T (n, ε), Dn(Cn(xn)) = xn, and therefore, since

P (xn ∈ T (x, ε)) ≥ 1− δ , (1.3.50)

we obtain

P (Dn(Cn(xn)) = xn) ≥ 1− δ n→∞−→ 1 (1.3.51)

2. Let R < H(X). As seen above, the compression-decompression scheme has at most 2nR

possible outputs. Then, at most 2nR sequences can be compressed (and decompressed)

without an error with S(n) the set of such sequences. By Lemma. 1.3.8, for large enough

n, P (xn ∈ S(n)) ≤ δ
n→∞−→ 0. We can, hence, conclude that the compression-decompression

scheme is not reliable.

1.3.2 Shannon’s noisy channel coding theorem

Let X,Y be random variables in the following. We revisit some already known quantities and

define a new one:
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• The joint entropy

H(X,Y ) = −
∑
x,y

px,y log px,y (1.3.52)

• Conditional entropy

H(X|Y ) =
∑
y

pyH(X|Y = y) = H(X,Y )−H(Y ) (1.3.53)

• Mutual information

I(X : Y ) = H(X) +H(Y )−H(X,Y ) (1.3.54)

For these notions, we can prove a series of fundamental properties, whose proof we do not include

in the main text as they were left as exercises for the students attending the course.

Proposition. 1.3.11 Given two random variables X and Y , the following properties hold for

their joint entropy, conditional entropy and mutual information:

1. Show that H(X|Y ) ≥ 0 and further

(a) H(X,Y ) ≥ H(X) with equality if and only if X = f(Y )

(b) I(X : Y ) ≤ H(Y ) with equality if and only if X = f(Y )

2. Show the subadditivity of the joint entropy, i.e.

H(X,Y ) ≤ H(X) +H(Y ) (1.3.55)

with equality if and only if X,Y are independent.

3. H(X|Y ) ≤ H(X) and thus I(X : Y ) ≥ 0 with equality if and only if X,Y are independent.

4. Show the chain rule for X1, . . . , Xn, Y , i.e.

H(X1, . . . , Xn|Y ) =

n∑
i=1

H(Xi|Y,X1, . . . , Xi−1) (1.3.56)

The following theorem is a well-known inequality which is required for the sketch of the proof

of the main result of this section, namely Shannon’s noisy theorem.

Theorem. 1.3.12 (Fano’s inequality) Let X and Y be two random variables and X̃ = f(Y )

a function of Y with which we intend to guess the value of X. Let pe = p(X ̸= X̃) be the error

made by guessing X with X̃.

H(pe) + pe log(|X| − 1) ≥ H(X|Y ) (1.3.57)

Proof. We define the random variable

E =

1 if X ̸= X̃

0 if X = X̃
(1.3.58)

then the following equations hold

• H(E) = H(pe)

• H(E|X,Y ) = 0

• H(E|Y ) ≤ H(E) = H(pe)
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By the chain rule and using the above equations we immediately get

H(E,X|Y ) = H(X|Y ) +H(E|X,Y ) = H(X|Y ) (1.3.59)

and

H(E,X|Y ) = H(E|Y ) +H(X|E, Y ) ≤ H(pe) +H(X|E, Y ). (1.3.60)

Thus we find that

H(X|Y ) ≤ H(pe) +H(X|E, Y ). (1.3.61)

What remains is to upper bound H(X|E, Y ) which can be done by noticing that

H(X|E, Y ) = p(E = 0)H(X|E = 0, Y ) + p(E = 1)H(X|E = 1, Y )

≤ p(E = 0)0 + pe log(|X| − 1)

= pe log(|X| − 1)

(1.3.62)

Shannon’s noisy coding theorem deals with a channel that in addition to encoding and decoding

is perturbed by a source of noise. An schematic representation of the communication channel in

such a case is provided in Figure 1.5. Note that the situation is similar to that of the case

without noise, with the main difference that, now, the codeword that outputs the encoder is sent

to Bob through some channels which model the noise present in the environment. To understand

mathematically how to describe such a noise, we start by introducing some new notions.

x1
x2

xn−1
xn

...

N

N

N

...

x1
x2

xn−1
xn

...E D

fig. 1.5: Schematic representation of a classical communication channel between Alice and Bob in

the presence of noise.

Definition. 1.3.13 (Classical channel)

A (classical) channel is a positive linear map

N : Rn
A → Rn

B (1.3.63)

verifying
m∑
i=1

N (pi) = 1 ∀(pi)ni=1 s.t.

n∑
i=1

pi = 1 and pi ≥ 0 . (1.3.64)

Notation. In the following we will denote

ℓk1 = (Rk, ∥·∥1) (1.3.65)

and write

N : ℓn1 → ℓm1 . (1.3.66)
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Definition. 1.3.14 (Capacity of a channel)

Intuitively, the capacity of a channel N is an asymptotic limit of

# transmitted bits with error ε→ 0

# required uses of the channel in parallel
. (1.3.67)

More precisely N : ℓn1 → ℓn1 , the (classical) capacity is defined as

Cc(N ) := lim
ε→0

lim sup
k→∞

{m
k

: ∃ E , ∃D s.t.
∥∥∥id ℓ2m1

−D ◦N⊗k ◦ E
∥∥∥ < ε

}
. (1.3.68)

Here we used the following notation

E encoder, ε : ℓ2m1 → ⊗kℓn1 ,

D decoder, D : ⊗kℓn1 → ℓ2m1 ,
(1.3.69)

and the k parallel uses of the channel N are denoted by

N⊗k : ⊗kℓn1 → ⊗kℓn1 . (1.3.70)

Now we are in position to state the main result of this section, namely Shannon’s noisy channel

coding theorem. A complete proof of this theorem would require many more preliminaries and is

far beyond the scope of this course. Therefore, below we only sketch some ideas behind the proof

of this result. However, we will provide a complete proof of its quantum analogue later in the

course, and since the quantum setting will be shown to constitute an extension of the classical one,

in particular such a proof will be valid for the current result.

Theorem. 1.3.15 (Noisy channel coding theorem) For a noisy channel N : ℓn1 → ℓn1 , its

classical capacity can be recovered from:

Cc(N ) = max
P=(p(x))nx=1

I(X : Y ) (1.3.71)

where the maximum is taken over the input distributions (p(x))
n
x=1 for X, for one use of the

channel, and Y the corresponding random variable at the output of (N (p))
n
y=1.

Proof (sketch). Our first goal is to show that

Cc(N ) ≥ max
P=((p(x))nx=1

I(X : Y ). (1.3.72)

Let X = {x, px} be the probability distribution for the input letters. Using X and N = (P (x|y))x,y
we determine Y = {y, py}.

We further have that codewords are chosen with a prior probability distribution governed by

Xn and that they are chosen from a typical set of 2nH(X) elements with high probability. On the

other hand for a received message Y n about 2nH(X|Y ) messages could have been sent. This means,

to make our decoding reliable, we need our input codewords to be chosen so that the error spheres

of two different codewords do not overlap (with high probability).

Decoding is now done by associating to Y n a sphere of 2n(H(X|Y )+δ) possible inputs such that

only one codeword is contained in this sphere. However, as every sphere contains a fraction of

2n(H(X|Y )+δ)

2nH(X)
= 2−n(H(X)−H(X|Y )−δ = 2−n(I(X:Y )−δ (1.3.73)

codewords it can happen that more than one codeword is contained in a sphere. If we set the

number of codewords to 2nR, with R the channel capacity (or rate), then the probability that all

of them lie in the decoding sphere is

2nR2−n(I(X:Y )−δ) = 2−n(I(X:Y )−R−δ) δ→0−→ R→ I(X : Y ). (1.3.74)

Hence the average probability of error is small over all codewords.
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Example. If we consider a binary random variable with

P (0|0) = 1− p P (1|1) = 1− p
P (0|1) = p P (1|0) = p

(1.3.75)

xn = x1 . . . xn is manipulated by the error channel and eventually np bits are flipped. The goal

then is to find so called Hamming spheres with center xn and radius np. The assure this condition

one chooses from a typical set of 2nH(x) elements.

1.4 Quantum Information Theory: Preliminaries

In this section, we are going to provide a brief introduction to quantummechanics and its formalism,

from a mathematical perspective. The concepts that we will introduce below are essential for the

postulates that we will present in the following subsections.

From now on, we will be working with n-dimensional (complex) Hilbert spaces H, which can

be identified with Cn. If the dimension is irrelevant or clear from the context we will just write H.

Notation. We further introduce the following (bra-ket) notation originally used by Paul Dirac

(1904 - 1984). He set

|ψ⟩ ∈ Cn to be a vector,

⟨ψ| ∈ (Cn)∗ to be a dual vector.
(1.4.1)

This notation originated from the notation for the inner product on H:

⟨ψ|ψ⟩ ∈ R . (1.4.2)

In this notation one can write the rank one operators onto the space spanned by |ψ⟩ as a ket-bra

|ψ⟩⟨ψ| : Cn → Cn (1.4.3)

allowing for the convenient use of these objects, for every |ξ⟩ ∈ Cn,

|ψ⟩⟨ψ|ξ⟩ = ⟨ψ|ξ⟩ |ψ⟩ ∈ Cn . (1.4.4)

The content of the following subsections has been inspired by the courses some basic texts

of quantum information theory, such as the courses [12], [25] and [20], as well as the books [23],

although one of the most fundamental texts in this field is [11]. We refer the reader to any of those

texts for further knowledge on the topic.

1.4.1 Qubits and basic operations

Another essential concept for quantum information theory is the one of a qubit. A qubit is the

simplest quantum mechanical system and plays the same role in quantum information theory as the

bit in classical information theory, which can be 0 or 1. Hence, it is the basic unit of information

and extends the the concept of a classical bit, which is just 0 or 1 to a superposition of those

two. Formally, it is the system described by a two-dimensional Hilbert space. We will denote the

canonical basis of this vector space Cn as {|0⟩ , |1⟩}, i.e.

|0⟩ =

(
1

0

)
, |1⟩ =

(
0

1

)
(1.4.5)

This basis is usually called the computational basis. Then, while a classical bit can be in the state

0 or in the state 1, an arbitrary state for a qubit is a vector

|ψ⟩ = a0 |0⟩+ a1 |1⟩ ∈ C2 (1.4.6)
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with a0, a1 ∈ C and |a0|2 + |a1|2 = 1. If a0 ̸= 0, a1 ̸= 0, we say that the state is in superposition of

the situations |0⟩ and |1⟩. Notice that this fact leads to the essential difference between the possible

states of a bit, which are just two, 0 or 1, and the possible states of a qubit, which, in principle, are

infinite. This new situation allows us to perform new protocols for quantum information processing.

Indeed, this principle constitutes the basis of the theoretical quantum computer, for which we can

briefly mention the main idea behind it in a nutshell:

• If we consider one bit, we can perform 1 operation at a time, whereas we can perform 2

operations simultaneously with one qubit. This is due to the superposition phenomenon

mentioned above, since now an arbitrary state is of the form

|ψ⟩ = a0 |0⟩+ a1 |1⟩ ∈ C2 ,

where one can see two basic bits (thus, operations) being performed at the same time.

• If we now have two bits, we can perform 2 operations at a time, while, if we consider two

qubits, 4 operations can be performed at the same time (we will see that when we consider

a superposition of the four elements of the Bell basis).

• In general, with n qubits, one can perform n operations simultaneously (one per each bit),

whereas with n qubits one can perform 2n operations at the same time.

Hence, theoretically, a quantum computer should be able give an exponential improvement to the

amount of operations performed in parallel compared to a classical computer (i.e. an exponential

speed-up).

Let us go back now to the definition and basic properties of qubits. It is important to remark

that, even though a given qubit can be in any superposition state a0 |0⟩+ a1 |1⟩, if we measure the

state of such a qubit, we will obtain either the value |0⟩ or |1⟩ for the state of the qubit (these

states can be seen as classical ones), with certain probabilities. Hence, we cannot “observe” the

superposition phenomenon, although we are able to use it, as we will see below.

In the following, another basis will be also rather important and we want to introduce it here.

It is given as

|+⟩ = 1√
2
(|0⟩+ |1⟩), |−⟩ = 1√

2
(|0⟩ − |1⟩) (1.4.7)

To extract classical information from a quantum system one performs a measurement. Performing

such a measurement on such an arbitrary state the systems turns out to be in the state |0⟩ with
probability |a0|2 and in the state |1⟩ with |a1|2.

A single qubit lives in C2. However, one can consider systems of more qubit to have richer

spaces. For example, if we consider 2 qubits, the 2-qubit system that we get has four elements in

a possible basis:

{|0⟩ ⊗ |0⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |0⟩ , |1⟩ ⊗ |1⟩},

where, in each case, the qubit in the left part denotes the first qubit (and associated to the first

system), and the right one denotes the second qubit. If one considers |0⟩ ⊗ |1⟩, for instance, this

element can be also expressed by |0⟩ |1⟩ or |01⟩, and the structure of tensor product implies that

in C4 can be written as: 
0

1

0

0

.
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More generally, as mentioned previously, if one considers a system of n qubits, a basis of such

system has 2n elements (it is equivalent to saying that, with n qubits, one can perform 2n operations

simultaneously). In particular, one can always consider for such elements of the basis the elements

|a1⟩ ⊗ |a2⟩ ⊗ . . . ⊗ |an⟩, with ai ∈ {0, 1} for all i = 1, . . . , n. Since there are 2n elements in this

basis, we can change this previous notation to |0⟩ , |1⟩ , . . . |2n−1⟩, to simplify it.

Therefore, a quantum state on n qubits, because of superposition, is given by

α0 |0⟩+ α1 |1⟩+ . . .+ α2n−1 |2n − 1⟩ ,
2n−1∑
i=0

|αi|2 = 1.

Moreover, as in the case of a single qubit, if one measures this in the computational basis, one

just gets a “classical” n-bit state, |i⟩, with probability |αi|2.
In a more general setting, consider a physical system that can be in N different, mutually

exclusive classical states (in the case of the qubit, N = 2, and for n qubits, N = 2n). A pure

quantum state |φ⟩ is a superposition of classical states in the following form:

|φ⟩ = α1 |1⟩+ α2 |2⟩+ . . .+ αN |N⟩.

The elements αi in the previous expression are complex numbers that are called amplitudes,

and, in this expression, it is easy to read the superposition phenomenon as the possibility of a

quantum system to be in N classical states states at the same time (or perform N operations

simultaneously, as mentioned above).

1.4.1.1 Measurement

In general, given a quantum state, we can consider two different scenarios: Either we measure it,

or we let it evolve under a unitary without measuring it. In this subsection, we explain the first

case.

Let us recall some basic notions about Hilbert spaces and their scalar products. Let H be a

Hilbert space (in general, we will just consider finite-dimensional spaces) and let T : H → H be

a linear operator on it. Since H is a Hilbert space, in particular it is a normed space with an

associated norm ∥·∥H, which comes from a scalar product ⟨·, ·⟩.
We say that T is a bounded operator if

∥T∥H→H := sup
x∈H

∥T (x)∥H
∥x∥H

<∞,

and denote by B(H) the space of bounded linear operators on H. Moreover, if T : H → H, we can

define its dual operator, and denote it by T ∗, as the operator that satisfies

⟨y, T (x)⟩ = ⟨T ∗(y), x⟩ for every x, y ∈ H.

Now we are in position to formally define a measurement in the following form:

Definition. 1.4.1 (Measurement)

Let {Mn}n ⊂ B(H) be a collection of operators verifying∑
n

M∗
nMn = 1 (1.4.8)

where 1 denotes the identity operator (we drop the subindex with the dimension when there is no

possible confusion) and M∗
n denotes the dual of the operator Mn. This collection of operators is

called quantum measurements when the following holds: Given a state of a quantum system
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|φ⟩ before performing this operation to measure it, the probability that result |n⟩ occurs is given
by

p(n) = ⟨φ,M∗
nMnφ⟩ (1.4.9)

and the state of the system after this operation is given by

Mn |φ⟩√
p(n)

.

Consider again the state

|φ⟩ = α1 |1⟩+ α2 |2⟩+ . . .+ αN |N⟩.

and assume that we measure it. As we have already mentioned, we will obtain the classical state

|i⟩, with probability |αi|2, thus we cannot “see” the superposition itself. Among some other things,

this means that the probability to get specifically the state |i⟩ when we measure, and not another

one, is |αi|2. Hence, since the quantum state induces a probability distribution on the classical

states, this implies

N∑
i=1

|αi|2 = 1.

Notice that when we measure |φ⟩ and get a classical state, |φ⟩ disappears, and all that is left

is the classical state itself. We say then that |φ⟩ has collapsed to the classical state that we got,

and the information encoded in the amplitudes αi is now gone.

In general, we will measure in the computational basis. However, there are several ways to

perform these measurements, that we will present throughout this section. Let us begin with the

easiest one, the measurement of a qubit in its computational basis. It is defined by the measurement

operators:

M0 = |0⟩ ⟨0| and M1 = |1⟩ ⟨1|.

Notice that both operators are selfadjoint, i.e., they coincide with their dual operators (actually,

they are projections), and they verify M∗
i Mi =M2

i =Mi, for i = 1, 2, where M∗
i denotes the dual

of the operator Mi, and M0 +M1 = 1. Also, when we measure

|φ⟩ = α0 |0⟩+ α1 |1⟩,

the probability to obtain the outcome |i⟩ is |αi|2, and the state after measurement in that case is
αi
|αi| |i⟩. Actually, we can see that this state is equivalent to |i⟩ (since it is just a rotation of the

latter).

Indeed, consider |φ⟩ and eiθ |φ⟩ (which is a more general expression for the element mentioned

above) and assume that we measure both states with a measurement {Mn}n. Then, the probability
of getting outcome n for the second element is

〈
φe−iθ|M∗

nMn|eiθφ
〉
= ⟨φ|M∗

nMn|φ⟩,

the same that for the first element. Hence, both states are operationally identical.
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1.4.1.2 Distinguishability of quantum states

One typical problem in quantum information is to distinguish between two (or more) quantum

states. Namely, among several possible states, we have a particle in one of them and we want to

find out in which one the particle actually is. We study this problem now in the simplest case: to

distinguish between two possible states.

First, let us assume that the states that we want to distinguish, |φ1⟩ and |φ2⟩ are orthogonal.

Then, if we choose the measurement operators Mi = |φi⟩ ⟨φi| for i = 1, 2 and define M0 =

1−
∑

iMi, it is easy to see that

M0 +M1 +M2 = 1.

Therefore, given i ∈ {1, 2}, if |φ⟩ is prepared in the state |φi⟩, we have

p(i) = ⟨φ|Mi|φ⟩ = 1, and p(j) = 0 for j ̸= i,

thus both states can be unambiguously distinguished.

Now, suppose that we want to distinguish two non-orthogonal states |φ1⟩ and |φ2⟩. We can

prove that there is no way to do that in general.

Proposition. 1.4.2 If |φ1⟩ and |φ2⟩ are not orthogonal, then we cannot distinguish between

them.

Proof. By reduction to the absurd, let as assume that there is a measurement {Mn}n∈I capable of

doing that, i.e., distinguishing both states. Then, we can consider a partition of the set I (I1, I2 ⊂ I
such that I1 ̸= ∅ ̸= I2, I1 ∪ I2 = I and I1 ∩ I2 = ∅) and this allows us to decide that if the result

of the measurement is |m⟩, with the index m ∈ Ii, then the state is |φi⟩.
Consider, for i = 1, 2, the operations Ei =

∑
j∈Ii

M∗
jMj , which satisfy by construction 1 =

E1 +E2. It is clear that we have

⟨φi|Ei |φi⟩ = 1 for i = 1, 2,

and

⟨φ1|E2 |φ1⟩ = ⟨φ2|E1 |φ2⟩ = 0.

Consider the first term in the previous equality. Since E2 is positive, one can write:

0 = ⟨φ1|E2 |φ1⟩ =
〈
φ1|
√
E2

√
E2|φ1

〉
,

so we get
√
E2 |φ1⟩ = 0. By assumption, |φ1⟩ and |φ2⟩ are not orthogonal, thus there exist

α1 ̸= 0 ̸= α2 and another state |ϕ⟩, orthogonal to |φ1⟩, so that

|φ2⟩ = α1 |φ1⟩+ α2 |ϕ⟩.

Applying
√
E2 to this expression, we get:√

E2 |φ2⟩ = α1

√
E2 |φ1⟩+ α2

√
E2 |ϕ⟩ = α2

√
E2 |ϕ⟩.

However, this is a contradiction, since this implies |α2| = 1 and, by assumption, we have

|α2| < 1 (since α1 ̸= 0).
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1.4.1.3 Projective Measurements

In this subsubsection, we are going to introduce projective measurements, which play an special

role in Postulate III of quantum mechanics (as we will see in the following section). They can be

defined in the following form.

Definition. 1.4.3 (Projective measurement)

Consider a collection {Mn}n ⊂ B(H) of measurements, as described in Definition 1.4.1. Assume

that they have the additional property that the Mn are orthogonal projections, i.e., they are

self-adjoint and verify

MnMm = δmnMn,

where δmn = 1 iff m = n and 0 otherwise. These measurements are called projective measure-

ments.

It is clear that each one of these operators Mn projects on a subspace Hn ⊂ H of the global

Hilbert space. Hence, an observable M can be defined as the Hermitian operator

M =
∑
n

λnMn,

where the term in the right hand-side is, in fact, the spectral decomposition of M . Moreover, the

possible outcomes of the measurement correspond to the eigenvalues λn of the observable, and

when we measure the state |φ⟩, the probability of getting state |n⟩ is:

p(n) = ⟨φ|Mn|φ⟩.

With this notation, the average value of the measurement, with respect to the state |φ⟩, is∑
n

np(n) =
∑
n

n ⟨φ|Mn|φ⟩ = ⟨φ|M |φ⟩.

1.4.1.4 POVM Measurements

In many situations, we will not be as interested in the post measurement state of our particle itself

as in the probabilities of the different possible measurement outcomes. In this case, we can reduce

to the formalism of the so called Positive Operator Valued Measurements (POVM’s).

Let us recall that an operator T ∈ B(H) is said to be positive (shortened form of positive

semidefinite) if

⟨x, T (x)⟩ ≥ 0 ∀x ∈ H.

As we will see below, the operators mentioned in the definition of POVM are clearly positive, since

⟨x,En(x)⟩ = ⟨Mn(x),Mn(x)⟩ = ∥Mn(x)∥ ≥ 0 ∀x ∈ H.

Definition. 1.4.4 (Positive operator valued measure)

Consider a measurement {Mn}n ∈ B(H) as in the Definition 1.4.1. Then, we can define the positive

operators

En =M∗
nMn.

This family of operators {En}n is called a POVM.

The operators presented in the definition of POVM clearly satisfy∑
n

En = 1
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and their probability of obtaining outcome m is

p(m) = ⟨φ|Em|φ⟩.

Conversely, if we have a collection of positive operators {En}n verifying
∑

nEn = 1, we can define

a measurement {Mn}n from them just by considering Mn =
√
En.

1.4.1.5 Unitary Evolution

As opposed to the previous subsection, now we let our quantum state evolve without measuring

it. Assume we have a system of the form

|φ⟩ = α1 |1⟩+ . . .+ αN |N⟩ (1.4.10)

and want to transform this to the system

|ψ⟩ = β1 |1⟩+ . . .+ βN |N⟩ . (1.4.11)

Quantum mechanics only allows linear operations to be applied to quantum states. This means

that, after a change of notation (identifying |φ⟩ with an n-dimensional vector), applying an oper-

ation that changes |φ⟩ to |ψ⟩ corresponds just to a multiplication by an N × N complex-valued

matrix. With the previous expressions for |φ⟩ and |ψ⟩, one has

U


α1

...

αN

 =


β1
...

βN

 (1.4.12)

and adding the condition that
N∑
i=1

|βi|2 = 1, (1.4.13)

we immediately get that U has to be a unitary. This means

UU∗ = U∗U = 1 (1.4.14)

Since it is unitary, then, in particular, U−1 = U∗, and this inverse always exists, what can be

translated in the quantum setting to the fact that every non-measuring operation on a quantum

state must be reversible (in contrast with measurements, which were clearly non-reversible).

We present now a prominent example of unitaries, the Pauli matrices.

Example.

σ0 = 1 =

(
1 0

0 1

)
σx = X =

(
0 1

1 0

)

σy = Y =

(
0 −i
i 0

)
σz = Z =

(
1 0

0 −1

) (1.4.15)

From a quantum computational point of view we can think of unitary matrices as quantum

logical gates. We will deepen in this connection in the first section of the following chapter.

1.4.1.6 Density operators

In this subsection, we introduce the density operators formalism that will be necessary to present

the Postulates of the Quantum Mechanics in the Schrödinger picture. Before moving to the defi-

nition of density operators, let us start by recalling some basic concepts. We start by recalling the

notion of trace of an operator.
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Definition. 1.4.5 (Trace)

Let T : H → H a linear map represented by a matrix M in a certain basis. We then define

Tr[T ] = Tr[M ] =
∑
i

Mii ∈ C (1.4.16)

as the sum of the diagonal elements of the matrix M . The trace of T is well defined as it is cyclic

and linear. This means it it is invariant under basis change.

It is easy to see that the trace is linear and cyclic, i.e., for A and B matrices,

Tr(AB) = Tr(BA).

From this last property, one also gets unitary invariance: For every unitary operator U ,

Tr(UAU∗) = Tr(U∗UA) = Tr(A).

Finally, another useful and interesting property concerning the trace is the following. Let |φ⟩ ∈ H
be a state (or unit vector), and consider the rank-one operator |φ⟩ ⟨φ| : H → H, which projects

in the direction of |φ⟩. Consider now an arbitrary operator T ∈ B(H) and suppose that we want

to compute Tr(A |φ⟩ ⟨φ|). To do that, before we express |φ⟩ in a basis {|i⟩} of H where the first

element is exactly |φ⟩, i.e., |φ⟩ = |1⟩. Then, we get:

Tr(A |φ⟩ ⟨φ|) =
∑
i

⟨i|A|φ⟩ ⟨φ|i⟩ = ⟨φ|A|φ⟩

Now, let us move to the formalism of density operators. In the previous subsections, we have

described the state of a physical system identifying it with a unit vector in the Hilbert space H.
However, there is an equivalent description with trace-class operators on the Hilbert space. One

of the main advantages of this description with respect to certain problems appears, for example,

when dealing with real experimental systems where noise is present.

A motivation for this formalism comes from the following situation: Sometimes, we do not

know whether our system is in a specific state |φ⟩, but rather that it is in each one of the states

|φi⟩ with probability pi, respectively. Hence, we would like to be able to consider the element∑
i

pi |φi⟩,

with the constants pi verifying ∑
i

pi = 1,

and work with it as a state. However, it is not a state anymore, since it is not a unit vector. To

avoid this difficulty, one can associate each state |φi⟩ to the rank-one projector |φi⟩ ⟨φi|. Hence,

the state in the previous scenario can be described, instead, in the following form

ρ =
∑
i

pi |φi⟩ ⟨φi|,

where ρ is a Hermitian, positive semidefinite, and trace one operator. Indeed, it is clear from its

description that ρ is Hermitian and has trace one (because of the linearity of the trace and the

fact that Tr(|φi⟩ ⟨φi|) = 1). To see that it is positive semidefinite, notice that for any |ϕ⟩ ∈ H,

⟨ϕ|ρ|ϕ⟩ =
∑
i

pi ⟨ϕ|φi⟩ ⟨φi|ϕ⟩ =
∑
i

pi |⟨ϕ|φi⟩|2 ≥ 0.

These operators are called density operators or density matrices and the set of such elements is

usually denoted by S(H).
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Definition. 1.4.6 (Quantum state/Density operators)

A quantum state or density operator is an linear continues operator ρ ∈ B(H), which is positive

semi-definite, i.e.

⟨ψ|ρ|ψ⟩ ≥ 0 ∀ |ψ⟩ ∈ H, (1.4.17)

and has trace one, i.e. Tr[ρ] = 1.

1.4.2 Postulates of quantum mechanics

The postulates of quantum mechanics were derived after a long process of trial and error, which

involved a considerable amount of guessing and fumbling by the originators of the theory. The

motivation for them is not always clear; even to experts the basic postulates of quantum mechanics

appear surprising.

In this section, we mostly focus on the mathematical formulation for the postulates of quantum

mechanics in two different (and dual) settings, Heisenberg and Schrödinger picture. These two

descriptions will help us to understand the topics presented above.

1.4.2.1 Heisenberg picture

The postulates in the Heisenberg picture can be stated as follows.

Postulate. 1

Given an isolated physical system, there is a complex Hilbert space H associated to it, called state

space. Moreover, the physical system is described by a state vector, a normalised vector in this

space.

In general, the state space H of the system under study will depend on the specific physical

system, but we know that it is a separable Hilbert space. Frequently, one restricts to finite-

dimensional Hilbert spaces for simplicity.

Postulate. 2

Given an isolated physical system, its evolution is described by a unitary. If the system is in

the state |φ1⟩ at time t = t1 and in the state |φ2⟩ at time t = t2, then there exists a unitary

U(t1, t2) = Ut1,t2 such that

|φ2⟩ = Ut1,t2 |φ1⟩ . (1.4.18)

This can be generalised using the Schrödinger equation: Given a closed quantum system (with

no interaction with an environment), the time evolution of a state on such system is described by

iℏ
d

dt
|φt⟩ = H |φt⟩ . (1.4.19)

where ℏ is the Planck’s constant. The linear self-adjoint operator H (generally time dependent)

is called Hamiltonian and describes the dynamics of the system. Let us consider the spectral

decomposition of the Hamiltonian (since it is a Hermitian operator):

H =
∑
Ei

Ei |Ei⟩ ⟨Ei|,

where we denote by Ei the eigenvalues and by |Ei⟩ the corresponding normalized eigenvectors, to

emphasize the fact that these eigenvalues represent some energies of the physical system. Indeed,

the states |Ei⟩ are usually called energy eigenstates or stationary states, with associated energy

Ei.
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The lowest energy is known as ground state energy, and its associated eigenstate is known as

the ground state, a fundamental element in the theory of quantum systems. Moreover, when the

difference between the two smallest eigenvalues is strictly positive, this difference is called spectral

gap, and we say in that case that the system is gapped. Determining whether a physical system

has or not a spectral gap is a really important problem in Quantum Physics.

The states |Ei⟩ mentioned above are called stationary because their only change in time is of

the form

|Ei⟩ 7→ exp(−iEit/ℏ) |Ei⟩.

Let us see now the connection between the two formulations for this postulate. If we consider

the Schrödinger equation, we can see:

|φ(t2)⟩ = exp

[
−iH(t2 − t1)

ℏ

]
|φ(t1)⟩ = U(t1, t2) |φ(t1)⟩,

where we are defining:

U(t1, t2) := exp

[
−iH(t2 − t1)

ℏ

]
.

This operation is easily seen to be unitary, and, furthermore, one can see that any unitary operator

U can be written in the form

U = exp(iK),

for some Hermitian operator K.

Postulate. 3

Given a physical system, with associated Hilbert space H, the quantum measurements over such

system are described by a collection {Mn}n ⊂ B(H) of measurements as defined in Definition 1.4.1.

More specificaly, the index n refers to the measurement outcomes that may occur in the ex-

periment, and given a state of a quantum system |φ⟩ before a measurement, the probability that

result |n⟩ occurs is given by

p(n) = ⟨φ|M∗
nMn|φ⟩

and the state of the system after the measurement is given by

Mn |φ⟩√
p(n)

.

Finally, measurement operators satisfy: ∑
n

M∗
nMn = 1.

Finally, the fourth postulate can be stated as follows.

Postulate. 4

Given a composite physical system, its state space is also composite, and corresponds to the tensor

product of the state spaces of the component physical systems. Moreover, if each system i is

prepared in the state |φi⟩, then the composite system is in the state |φ1⟩ ⊗ . . .⊗ |φn⟩.

After introducing the fourth postulate, it is necessary to make the following remark, which leads

to introducing the concept of entanglement. Consider two Hilbert spaces H1 and H2. Since these

two Hilbert spaces have inner products (resp. ⟨·, ·⟩1 and ⟨·, ·⟩2), it is a natural question whether

one can introduce an inner product, and therefore a topology, on the tensor product that arise

naturally from those of the factors. This can be done by defining the inner product as:
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⟨φ1 ⊗ φ2, ψ1 ⊗ ψ2⟩ = ⟨φ1, ψ1⟩1 ⟨φ2, ψ2⟩2

for every φ1, ψ1 ∈ H1 and φ2, ψ2 ∈ H2, and extending by linearity. Finally, we take the completion

under this inner product, and we get as the resulting Hilbert space the tensor product of H1 and

H2. This can be generalized to the tensor product of n Hilbert spaces.

Now, a composite Hilbert space, i.e., a Hilbert space of the form H1 ⊗H2 ⊗ . . .⊗Hn, contains

elements which are not tensor products of elements of each one of the components. In other words,

if |φ⟩ ∈ H1 ⊗H2 ⊗ . . .⊗Hn, there not exist, in general, |φi⟩ ∈ Hi for all i so that

|φ⟩ = |φ1⟩ ⊗ |φ2⟩ ⊗ . . .⊗ |φn⟩.

A standard example of a non trivial two qubit state is the EPR pair [7], or Bell state is the following

state:

|ϕ+⟩ = |00⟩+ |11⟩√
2

.

This structure of tensor products leads to the definition of quantum entanglement, a behavior that

seems to be at the root of many of the most surprising phenomena in quantum mechanics.

Definition. 1.4.7 (Entanglement)

Given a state |φ⟩ ∈ H1 ⊗H2 ⊗ . . . ⊗Hn, we say that |φ⟩ is entangled if it cannot be written as

an elementary tensor product of the form

|φi⟩ ⊗ . . .⊗ |φn⟩ (1.4.20)

Notice that, in particular, one needs to have more than one system to talk about entangled

states.

1.4.2.2 Schrödinger Picture

In the Schrödinger picture, we consider density matrices instead of states.

Postulate. 1

Given an isolated physical system, there is a complex Hilbert space H which is known as the state

space of the system. This system is completely described by its density operator, which is a

Hermitian, positive semidefinite and trace one operator ρ ∈ S(H).
Moreover, if we know the probability of the system in every state (for each state ρi, the prob-

ability that the system is in that state is pi), then the state ρ can be written as∑
i

piρi.

Since the Heisenberg and Schrödinger picture are duals, there is an identification between

observables in the Heisenberg picture and density matrices in the Schrödinger one. This leads to

directly calling by states the density matrices, in a slight abuse of notation. With this notation,

we denote by pure states the density matrices of the form

ρ = |φ⟩ ⟨φ|

and by mixed states the ones of the form

ρ =
∑
i

pi |φi⟩ ⟨φi|.

For the second postulate, concerning evolution of systems, we have the following formulation.
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Postulate. 2

Given an isolated physical system, with associated Hilbert space H, its evolution is described by

a unitary transformation. More specifically, if the state of the system t1 is described by the

density matrix ρ1 and the state of the system at instant t2 > t1 is described by ρ2, then there exist

a unitary operator U , which depends only on t1 and t2, such that

ρ2 = Uρ1U
∗.

As in the Heisenberg picture, the evolution of a density matrix is given by a unitary. To explain

the form of the statement of the second postulate, consider

ρ =
∑
i

pi |φi⟩ ⟨φi|.

Notice that, since the system initially is in the state |φi⟩ with probability pi, then after the evolution

given by a unitary U it will be in state U |φi⟩ with probability pi. Therefore, the associated density

operator will be given by∑
i

piU |φi⟩ ⟨φi|U∗ = U

(∑
i

pi |φi⟩ ⟨φi|

)
U∗ = UρU∗.

Moving to the third postulate and the relation with quantum measurements, we have the following

formulation for it.

Postulate. 3

Given an isolated physical system, with associated Hilbert space H, any quantum measurements

on it are described by a collection of measurement operators {Mn}n as the ones described in

Definition 1.4.1. As in the case of the Heisenberg picture, each index n refers to the different

outcomes that may occur when measuring. Indeed, If the state of the quantum system is ρ before

the measurement, the probability that we get result n is given by

p(n) = Tr(M∗
nMnρ),

and the state that we get after the measurement is given by:

MnρM
∗
n

p(n)
.

Moreover, since probabilities need to sum one, these operators have to satisfy∑
n

M∗
nMn = 1.

Suppose that we measure with the measurement {Mn}n a mixed state of the form

ρ =
∑
i

pi |φi⟩ ⟨φi|.

Then, if the initial state is |φi⟩, for instance, the probability of having outcome n is

p(n|i) = ⟨φi|M∗
nMn|φi⟩ = Tr(M∗

nMn |φi⟩ ⟨φi|).

Hence, the total probability of this outcome is

p(n) =
∑
i

p(n|i)pi =
∑
i

pi Tr(M
∗
nMn |φi⟩ ⟨φi|) = Tr(ρM∗

nMn),

because of the definition of ρ. And analogously, one can see that the post-measurement state is

given by:
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MnρM
∗
n

p(n)
.

Finally, concerning the state space of a composite physical system, we get the following postulate,

due to the linearity of tensor products.

Postulate. 4

Given a composite physical system, its state space is the tensor product of the state spaces of the

component physical systems.

Moreover, if each system i is initially prepared in state ρi, then the state in which the composite

system is prepared is given as the tensor product of the ρi, i.e., ρ1 ⊗ ρ2 ⊗ . . .⊗ ρn.

These reformulations of the postulates of quantum mechanics in terms of the density operator

are, clearly, mathematically equivalent to the description in terms of the state vector. However, as

a way of thinking about quantum mechanics, the density operator approach has advantages with

respect to two main facts: the description of quantum systems whose state is not known, and the

description of subsystems of a composite quantum system.

1.4.3 Quantum circuits

In this subsection, first, we present a brief survey on classical Boolean circuits, and, then, we

introduce some notions of quantum circuits, by outlining the difference with respect to the latter

ones.

1.4.3.1 Classical circuits

A classical circuit is used to represent functions from {0, 1}n to {0, 1}. It is a computational model

that consists of decomposing each function in some elemental operations, so that this procedure

allows us to represent all the possible functions in the domain. This model has good properties in

general and is fundamental in computational theory.

In classical complexity theory, we can define a Boolean circuit more formally as follows.

Definition. 1.4.8 (Boolean circuit)

A Boolean circuit is a finite directed acyclic graph composed of AND, OR an NOT gates (see

Figure 1.6).

fig. 1.6: Some classical gates for two qubits. AND, OR and NOT are used to construct the rest.

An important theoretical result is that any function on bits can be computed from the compo-

sition of NAND gates alone, which is thus known as a universal gate. By contrast, the XOR alone

or even with NOT is not universal (one can notice that just by taking a look at the parity).

The idea of classical circuits lays on the following facts:
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• Every circuit has n input nodes, which contain n input bits.

• The circuit is made of those three gates (AND, OR and NOT), and combinations of then, as

well as some output nodes.

• The initial input bits are fed into combinations of the previous gates, so that eventually the

output nodes assume some value.

Let f : {0, 1}n → {0, 1}m be a Boolean function. Then, we say that a circuit computes it if the

output nodes get the right value f(x) for every x ∈ {0, 1}n.
Now we can introduce some concepts related to the complexity of some circuits. Let us denote

a circuit family by a set C = {Cn}, each one of them of input size n (which means that the number

of input nodes, and hence bits, is exactly n). We assume that each one of these circuits has one

output bit. Then, we say that this family recognizes a certain language L ⊆ ∪
n≥0
{0, 1}n (which we

denote hereafter by {0, 1}∗) if, for every x ∈ {0, 1}n, the circuit Cn outputs:

• 1 if x ∈ L.

• 0 if x /∈ L.

1.4.3.2 Quantum gates

Let us move now to quantum circuits, which generalize the idea of classical circuit families. In this

case, we replace the AND, OR and NOT gates by elementary quantum gates. We define a quantum

gate as a unitary transformation in a small number of qubits, usually 1, 2 or 3. The following are

the most important gates 1-qubit gates:

1. Bitflip gate: It negates the bit, i.e., swaps |0⟩ and |1⟩. It can be represented by:

X =

(
0 1

1 0

)
(1.4.21)

2. Phaseflip gate: It puts a - in front of |1⟩. It can be represented by:

Z =

(
1 0

0 −1

)
(1.4.22)

3. Phase gate: It rotates the phase of the |1⟩-state by an angle θ:

Rθ =

(
1 0

0 eiθ

)
(1.4.23)

4. Hadamard gate: It is specified by:

H =
1√
2

(
1 1

1 −1

)
(1.4.24)

The last one, the Hadamard gate, is possibly the most important 1-qubit gate. If we apply H to

an initial state |0⟩ and then measure, we have the same probability of observing |0⟩ or |1⟩, and
analogously if we apply it to initial |1⟩. However, when applied to the superposition state

1√
2
|0⟩+ 1√

2
|1⟩,
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the Hadamard gate provides the value |0⟩. The effect that we get in this case (both positive and

negative amplitudes for |1⟩ cancelling out) is called interference. It is completely analogous to the

interference patterns that one can notice in light or sound waves.

We can further define gates that act on 2 qubits:

5. CNOT (Controlled not): Given two input bits, this gate is used to negate the second bit

if the first one is 1, and to leave it invariant if the first bit is 0. It can be represented by

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1.4.25)

In this scenario, the first qubit is called the control qubit, since it is the one that determines the

effect of the gate, and the second one is called the target qubit, as it is the one that receives the

effect.

In general, if U is a 1-qubit gate (as the ones that we have defined above), then the we can

define the 2-qubit controlled-U gate analogously to the previous one, i.e., if the first bit is 0 it does

nothing, and, if it is 1, the gate applies the unitary to the second bit. We can represent it in the

following matrix form:

6. Controlled-U gate: If the first bit is 0 it does nothing, and, if it is 1, the gate applies the

unitary to the second bit. It is given by

CU =


1 0 0 0

0 1 0 0

0 0 U11 U12

0 0 U21 U22

 (1.4.26)

Another way to understand the quantum CNOT gate is as a generalization of the classical XOR

gate. Note, however, that there are some classical gates, like NAND or XOR, which cannot be

understood as unitary gates in a sense similar to the way the quantum NOT gate represents the

classical NOT gate. The reason is because these two gates are essentially irreversible.

We can see that in the following example: Given an output A ⊕ B of a XOR gate, it is not

possible to determine what the inputs A and B were. This can be also stated by saying that there

is a loss of information associated with the irreversible action of the XOR gate. On the other hand,

since quantum gates are described by unitary matrices, it is important to remark that they can

always be inverted by another quantum gate.

Further we name the following 3-qubit gate, which is particularly interesting as it is classically

universal. This means every classical computation can be implemented by a sequence of Toffoli

gates.

7. Toffoli gate or CCNOT (Controlled-Controlled-NOT gate): It negates the third bit

of its input if both the first two bits are 1.

All those gates mentioned above can be composed into bigger unitary operations in the following

ways:

• By taking tensor products, if the gates are applied in parallel.

• By taking matrix products, if the gates are applied sequentially.
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We show now an example of these operations. If we apply a Hadamard gate H to each bit in a

register of n zeros, we get

1√
2n

∑
j∈{0,1}n

|j⟩,

a superposition of all n-bit strings, whereas applying H⊗n to an initial state |i⟩, with i ∈ {0, 1}n

gives us

H⊗n |i⟩ = 1√
2n

∑
j∈{0,1}n

(−1)i·j |j⟩,

with i · j =
n∑

k=1

ikjk the inner product of the n-bit strings i, j ∈ {0, 1}n. In this case, one can also

notice that the Hadamard is its own inverse. Thus, if we apply it again on the right-hand side of

the previous expression, we get the initial |i⟩. This makes the Hadamard gate quite useful for the

development of algorithms, as we will see in the following section.

To sum up, as in the case for classical circuits, one can define a quantum circuit in the following

form.

Definition. 1.4.9 (Quantum circuit)

A quantum circuit is a finite directed acyclic graph composed by:

• Input nodes. Some of these nodes (n nodes) contain the input, and some more nodes are

initially |0⟩ (they are called the workspace).

• Quantum gates. Each of them operates on, at most, two or three qubits of the state.

• Output nodes. The previous gates transform the initial state vector into a final state,

which will generally be a superposition.

Let us see now how one can draw these circuits. We usually consider that time progresses

from left to right. As briefly mentioned above, each qubit is represented as a wire, and the circuit

prescribes which gates are applied to each wire.

With this notation of wires, it is clear that 1-qubit gates act on just one wire, whereas 2-qubit

and 3-qubit gates act, respectively, on 2 or 3 wires. Moreover, when a gate acts on more than

1 qubit, and one of them is the control one, its wire is drawn with a dot linked vertically to the

target qubits, i.e., the qubits where this effect is applied.

We show an example of this notation in the following figure.

fig. 1.7: Circuit used to turn |00⟩ into 1√
2
(|00⟩ − |11⟩).

In this example, and in general, we denote the quantum CNOT by ⊕. If we study every step

separately, and taking into account the definition for every gate mentioned above, we can see that,

after each step, the resulting state is:

• Step 0. We start with |φ0⟩ = |00⟩.
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• Step 1. After the Hadarmard gate, we have |φ1⟩ =
1√
2
(|00⟩+ |10⟩).

• Step 2. When we apply the CNOT gate, we get |φ2⟩ =
1√
2
(|00⟩+ |11⟩).

• Step 3. Finally, after the Z gate, we have |φ3⟩ =
1√
2
(|00⟩ − |11⟩).

1.4.4 No-Cloning theorem

In this subsection, the question that we want to pose is: ”Can we clone a classical/quantum bit?”.

In the classical setting the answer is clearly yes. The cloning can be done just by the circuit

shown in Figure 1.8. It is a trivial application of the classical CNOT gate.

fig. 1.8: Classical way to clone a bit.

The interpretation of this circuit is the following. Let us assume that we start with the bit x

that we want to clone, and we take it as a control bit, as well as the 0 bit, which we take as the

target bit. Then, applying a classical CNOT gate, one automatically gets an output given by two

copies of x.

In the quantum setting the answer is no! In principle, one could be tempted to think that a

similar argument as in the classical case can follow using instead a quantum CNOT gate. However,

it does not work [26], as we show below.

To frame our question more mathematically, we phrase it in the following terms: Consider a

quantum machine with two input qubits labeled by A and B. The first one is the control qubit,

denoted by |psi⟩, and the second one the target qubit, initially |ϕ⟩. Hence, the initial state is given

by

|ψ⟩ ⊗ |ϕ⟩.

Assume now that our quantum machine facilitates cloning. Then this machine fulfills the proper-

ties: There exists a unitary U such that

• For a given |ψ⟩ ⊗ |ϕ⟩, we have

|ψ⟩ ⊗ |ϕ⟩ U−→ U(|ψ⟩ ⊗ |ϕ⟩) = |ψ⟩ ⊗ |ψ⟩ (1.4.27)

• For another state |φ⟩ ⊗ |ϕ⟩, we find again

|φ⟩ ⊗ |ϕ⟩ U−→ U(|φ⟩ ⊗ |ϕ⟩) = |φ⟩ ⊗ |φ⟩ (1.4.28)

From this it immediately follows that

⟨φ|ψ⟩ = λ = λ2 = ⟨φ|ψ⟩2 . (1.4.29)

This implies that

λ =

0 States are orthogonal

1 States are the same
. (1.4.30)
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Hence, we can clone only classical information embedded into a quantum system, making no

quantum cloning device possible in general. Even if we consider U not to be a unitary (as we

implicitly did), there is no general cloning device.

1.4.5 Quantum teleportation

We present now another example of how the gates of the previous subsections can be used to

get results of relevance. In this particular case, we will explain quantum teleportation [3] as a

combination of some elementary gates from the ones above.

Quantum teleportation is one of the most representative communication protocols of quantum

information theory. The protocol is schematically described in Figure 1.9. Suppose there are

two parties, Alice and Bob, which are spatially separated, and Alice wants to send a qubit of

information to Bob by just sending two classical bits via a classical channel. For that, they first

met and shared an EPR (Einstein-Podolsky-Rosen) state, given by:

EPR =
1√
2
(|00⟩+ |11⟩) =: |φ⟩ . (1.4.31)

Alice Bob

two bits

qubit

fig. 1.9: Schematic representation of the protocol of Quantum teleportation

In a sense, this protocol means that to send one qubit, one needs one EPR state and two

classical bits that have to be exchanged. They jointly carry more information then one qubit. The

fact that a qubit can be sent by means of this procedure is usually expressed by writing:

1 EPR + 2 bits ≥ 1 qubit

It is important to remark that Alice does not need to know her own qubit in order to send it

to Bob. Let us see how this works. Alice has a quantum state of the form

|ψ⟩ = α |0⟩+ β |1⟩ (1.4.32)

that she wants to transfer. We can assume that Alice does not know the values of α and β. We

can then split the procedure in the following steps:

1. The combined initial system is

|φ0⟩AA′B′ = |ψ⟩A ⊗ |φ⟩A′B′ = (α |0⟩A + β |1⟩A)⊗
(

1√
2
(|00⟩A′B′ + |11⟩A′B′)

)
=

1√
2

(
α(|000⟩AA′B′ + |011⟩AA′B′) + β(|100⟩AA′B′ + |111⟩AA′B′)

)
,

(1.4.33)

where we are writing subindices in the last line to outline whom each bit belongs to.

2. Alice now applies now a CNOT gate to this state to her part, i.e. the first two qubits:

|φ1⟩ = CNOTAA′ |φ0⟩

=
1√
2

[
α(|000⟩AA′B′ + |011⟩AA′B′) + β(|110⟩AA′B′ + |101⟩AA′B′

] (1.4.34)
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3. Alice applies a Hadamard gate on her first qubit, obtaining

|φ2⟩ = HA ⊗ 1A′B′ |φ1⟩

=
1√
2

[
α
|0⟩A + |1⟩A√

2
⊗ (|00⟩A′B′ + |11⟩A′B′) + β

|0⟩A − |1⟩A√
2

(|00⟩A′B′ + |11⟩A′B′

]
=

1

2
[|00⟩AA′ ⊗ (α |0⟩+ β |1⟩) + |10⟩AA′ ⊗ (α |0⟩B′ − β |1⟩B′)

+ |01⟩AA′ ⊗ (α |1⟩B′ + β |0⟩B′) + |11⟩AA′ ⊗ (α |1⟩B′ − β |0⟩B′ ]

(1.4.35)

with

H =
1√
2

(
1 1

1 −1

)
. (1.4.36)

We have written the state in this way, because of the considerations in the next step.

4. This last expression has four different terms, and each one of them can be seen as the product

one of the elements of the 2-qubit computational basis for Alice and another qubit (in four

different forms) for Bob. Thus, if Alice measures her pair in the computational basis, i.e.,

{|00⟩ , |01⟩ , |10⟩ , |11⟩},

she gets one of the previous four elements and, thus, she can read off Bob’s postmeasurement

from this value, given her measurement, in the following way:


|00⟩A 7→ |φ3(00)⟩B := α |0⟩B + β |1⟩B
|01⟩A 7→ |φ3(01)⟩B := α |1⟩B + β |0⟩B
|10⟩A 7→ |φ3(10)⟩B := α |0⟩B − β |1⟩B
|11⟩A 7→ |φ3(11)⟩B := α |1⟩B − β |0⟩B .

Hence, the way of proceeding is the following: Alice measures her two bits in the com-

putational basis, sends the result to Bob over a classical channel, and Bob knows which

transformation he must do on his qubit to regain the desired qubit |φ⟩. In each case, Bob

has to do the following:

Alice sends Bob receives Bob does (to obtain |ψ⟩)
|00⟩ → {0, 0} |ψ⟩ Nothing

|10⟩ → {1, 0} α |0⟩ − β |1⟩ Applies a Z gate

|01⟩ → {0, 1} α |1⟩+ β |0⟩ Applies a X gate (NOT gate)

|11⟩ → {1, 1} α |1⟩ − β |0⟩ Applies a X and Z gate

It is noteworthy that Alice has to communicate through a classical channel to send her measure-

ment, thus there is no instant transfer of information. More specifically, quantum teleportation

does not allow for faster than light communication, as, to complete the protocol, in the third

step above, Alice must transmit her measurement’s result to Bob over a classical communication

channel.

We also need to remark that we are not creating a copy of |ψ⟩ being teleported. Alice destroys

her state in the process of measuring, so this protocol is also no contradiction to the no-cloning

theorem.
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1.4.6 Superdense coding

Now we present a third example of use of the previous quantum gates for a certain communication

protocol. More specifically, in this subsection we discuss superdense coding [2], which is a com-

munication protocol that allows to transmit 2 classical bits of information by just sending 1 qubit,

assuming that Alice and Bob share an EPR pair. Analogously to the previous example, we can

express the fact that two bits can be sent by means of this procedure by writing:

1 EPR + 1 qubit ≥ 2 bits

The protocol in this case can be schematically represented as in Figure 1.10:

Alice Bob

qubit

two bits

fig. 1.10: Superdense coding.

1. First, Alice and Bob share an EPR state:

|φ⟩ = 1√
2
(|00⟩+ |11⟩). (1.4.37)

2. Next, let us denote by {x, y} the classical bits Alice wants to send. Alice performs the

following operations to the first qubit of |φ⟩ (which is in her possession) and then sends the

state she obtains:

Alice wants to send Alice does to |φ⟩ She gets

{0, 0} Nothing |φ1⟩ = 1√
2
(|00⟩+ |11⟩)

{1, 0} Applies a Z gate |φ1⟩ = 1√
2
(|00⟩ − |11⟩)

{0, 1} Applies a X gate |φ1⟩ = 1√
2
(|10⟩+ |01⟩)

{1, 1} Applies a iY gate (or X and Z) |φ1⟩ = 1√
2
(|01⟩ − |10⟩)

Since these four last elements for the Bell basis of C2⊗C2, each state can be perfectly

distinguished by an appropriate quantum measurement.

3. Alice sends her part of the state to Bob, so that he is now in possession of the whole state.

By measurement the whole state in the Bell basis, Bob can then determine which of the four

possible bit strings Alice sent him.

1.4.6.1 Universality of quantum gates

In this section we want to discuss the universality of certain sets of elementary quantum gates.

In the classical setting, we have that AND and NOT are universal, in the sense that any classical

Boolean circuit can be implemented just using AND and NOT gates. We can also show that the

Toffoli gates are universal for classical computation by reducing the Toffoli gate to an AND and

NOT gate respectively:

Tofolli =

AND Fix the third input to 0,

NOT Fix the first and second input to 1.
(1.4.38)
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Hence, if we apply Toffoli gates, we can implement any classical computation in a reversible

manner.

Now, if we move to the quantum case, there are also several possibilities for universal sets of

elementary gates. Let us mention here some examples:

• All 1-qubit operations + 2-qubit CNOT. This set is universal, in the sense that any

other unitary transformation can be built from these gates.

However, it is difficult to consider this set, as ‘all’ possible 1-qubit gates are difficult to be

described (there are continuously many of them). Also, we cannot expect that experimen-

talists can implement these gates with infinite precision. Hence, the practical model that is

usually considered allows just a small finite set of 1-qubit gates from which the rest can be

efficiently approximated.

• CNOT, Hadamard and Rπ/4. It is universal concerning approximation. It means that

any other unitary can be arbitrarily well approximated using circuits, and it is a consequence

of the Solovay-Kitaev theorem [19, 10].

If we restrict to real numbers, then we also have the following set:

• Hadamard and Toffoli. This set is universal for all unitaries with real entries, again in

the sense of approximation.

1.4.6.2 Some further basic definitions

Before concluding this chapter, we need to introduce some further notions and basic results which

will be of use for the exercises of the next lectures.

Let us start by introducing the partial trace of a density operator. For this discussion, let

HAB = HA⊗HB be a composite system and let

S(H) := {ρ ∈ B(H) : ρ = ρ∗, ρ ≥ 0, Tr[ρ] = 1} (1.4.39)

be the set of quantum states (or density matrices) on HAB .

Definition. 1.4.10 (Partial trace)

The partial trace TrB is a linear, trace preserving completely positive map which is defined over

basis product states of the composite space by

TrB : S(HAB)→ S(HA), |a1⟩⟨a2| ⊗ |b1⟩⟨b2| 7→ Tr[|b1⟩⟨b2|]|a1⟩⟨a2|. (1.4.40)

This notion extends to other density matrix by linearity. In particular, for a product state ρ =

ρA ⊗ ρB , we get that

TrB [ρ] = TrB [ρA ⊗ ρB ] = Tr[ρB ]ρA = ρA. (1.4.41)

We want to highlight the following interesting property. Let MA ∈ B(HA) and MA ⊗ 1B , then

Tr[MAρA] = Tr[MA ⊗ 1B ρAB ] (1.4.42)

in the case that ρAB ∈ S(HAB).

We will also need for the exercises to be able to decompose pure states into basis products of

a composite Hilbert space. We use the Schmidt decomposition for that purpose.

Theorem. 1.4.11 (Schmidt decomposition) Assume that |ψ⟩ is a pure state in a composite

system HAB = HA⊗HB. Then, there exist orthonormal states {|iA⟩} in HA and {|iB⟩} in HB

such that

|ψ⟩ =
∑
i

λi |iA⟩ ⊗ |iB⟩ , with λi ≥ 0,
∑
i

λ2i = 1. (1.4.43)
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The λi are called Schmidt coefficients and the number of λi in the decomposition, with multiplicity,

is the Schmidt rank of the state.

Consequence. 1.4.11.1 (Purification) Consider a state ρA ∈ S(HA). We can introduce an

auxiliary system HR, and construct a pure state |ψAR⟩ ∈ HA⊗HR such that

ρA = TrR[|ψAR⟩⟨ψAR|]. (1.4.44)

Hence the theorem allows us to make a connection between mixed states and pure states in a larger

Hilbert space.



Chapter 2

Quantum Nonlocality

2.1 Quantum Nonlocality

In the past section we introduced the formalism of quantum mechanics. This formulation, however,

was widely questioned since its origins in the physics as well as in the mathematical worlds. The

only thing the scientific community could agree on was that the theory is a useful description of

physical laws and allows to predict them in a very precise way. However, some important scientists

showed some skepticism about the nondeterministic nature of the theory.

Throughout the years there has been a major discussion on this topic, in particular about the

uncertainty part of quantum mechanics and its mathematical formalisation. Alternative theories

have been proposed which incorporated the uncertainty principle that is generally believed to be

intrinsic to nature. The most relevant models under this framework are called ”Local Hidden

Variable Models”. The idea behind these models is that there exists a hidden probability over all

possible states in the world that we cannot know. However, once one of these states is fixed, we

are in a completely deterministic situation.

More specifically, in the first Chapter, when we discussed the Postulates of Quantum Mechanics,

we said that the vector state contains all the information that we can obtain about the system.

This, in particular, implies that the impossibility to obtain more accurate information about a

physical system does not depend on our precision, but is something intrinsic of Nature. On the

other hand, the main idea behind the Hidden Variable Models is that such an ignorance about

Nature is due to our own restrictions. According to these theories, there exists a hidden probability

over all the possible states of the world that we cannot know. However, once one of these states is

fixed, we are in a completely deterministic situation.

This can be rephrased and summarised as follows:

Uncertainty in Nature can be understood as a classical average over deterministic

states.

These discussions about completeness of quantum mechanics and alternative theories started in

1935 with a paper by Einstein, Podolsky and Rosen, who proposed and experiment to ”prove” the

incompleteness of quantum mechanics as a model of Nature. It took almost 30 years until Bell

understood that the EPR paradox could be reformulated in terms of certain assumptions which

naturally lead to a refutable prediction. In particular, Bell showed that the assumption of a local

hidden variable model implies some inequalities on the set of correlations obtained in the scenario of

a certain measurement (called Bell inequalities). Bell inequalities are violated by certain quantum

correlations produced with an entangled state.

41
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In summary, quantum nonlocality can be identified with the violations of Bell inequalities. These

considerations have strong implications for quantum information, as they are key for some of its

branches, such as the security of quantum cryptography protocols as well as the quantum advantage

in communication complexity and information theoretical protocols. In the next few pages, we

will discuss the notion of quantum nonlocality, associated to the violations of Bell inequalities.

Subsequently, we will provide a brief review on nonlocal games and sets of correlations. We will

conclude by mentioning some very recent results on the topic. The content of this chapter has

been mainly extracted from [12] and [22].

2.1.1 Correlation in EPR Bell’s result

Let us consider the following experiment: We have Alice, Bob and Charlie and the latter send one

particle to each of the former. Alice can measure two properties of this particle, named A1 and

A2, which output as a value +1 or −1. Analogously, Bob can measure two properties B1 and B2

on his particle, outputting also +1 or −1. This setup is schematically represented in Figure 2.1.

Charlie

Alice Bob

Particle 1. Particle 2.

Properties {A1, A2} Properties {B1, B2}

fig. 2.1: EPR setup

We now want to better understand the the EPR paradox and the reformulation of it by Bell.

For that, this experiment has the following conditions:

• We consider measurements in a disconnected manner, i.e. simultaneous measurements that

therefore cannot influence each other.

• We repeat the experiment as many times as possible.

We consider the following combination of the outcomes

A1B1 +A1B2 +A2B1 −A2B2 = (A1 +A2)B1 + (A1 −A2)B2 . (2.1.1)

It is clear that, in this expression, either A1 +A2 or A1 −A2 takes the value 0. Therefore,

A1B1 +A1B2 +A2B1 −A2B2 = ±2 (2.1.2)

• Let us assume that we are in the setting of a local hidden variable model. Note that the

locality condition allows us to perform measurements in a disconnected manner, whereas the

hidden variable model provides a hidden probability on the space of all possible deterministic

states of the world. Let us denote by

P (a1, a2, b1, b2) = P (A1 = a1, A2 = a2, B1 = b1, B2 = b2) (2.1.3)
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the hidden probability. Then the CHSH (Clauser-Horn-Shimony-Holt) inequality states:

|E[A1B1 +A1B2 +A2B1 −A2B2]|

=
∣∣∣ ∑
a1,a2,b1,b2

p(a1, a2, b1, b2)(a1b1 + a1b2 + a2b1 − a2b2)
∣∣∣ ≤ 2

(2.1.4)

• Let us assume that we are in the setting of Quantum Mechanics. Consider the following

state formed by the two particles sent by Charlie

|φ⟩ = |01⟩ − |10⟩√
2

, (2.1.5)

with the first qubit going to Alice, who measures it with A1 = X or with A2 = Z, and the

second one to Bob, who measures it with B1 = −Z−X√
2

or B2 = Z−X√
2
. Then, however,

⟨φ|A1B1|φ⟩ = ⟨φ|A2B1|φ⟩ = ⟨φ|A1B2|φ⟩ =
1√
2

(2.1.6)

and

⟨φ|A2B2|φ⟩ = −
1√
2

(2.1.7)

giving us

⟨φ|A1B1 +A1B2 +A2B1 −A2B2|φ⟩ = 2
√
2 > 2. (2.1.8)

From this it immediately follows, that local hidden variable models cannot describe quantum

mechanics. Or, in other words, certain correlations in the previous experiment cannot be explained

by a local hidden variable model.

2.1.2 Tsirelson’s Theorem

We can generalize the previous scenario to N measurements. For that, we define the correlation

matrix as

γij = E[AiBj ] ∀i, j = 1, . . . , N. (2.1.9)

In the local hidden variable model this evaluates to

γij =

∫
Ω

Ai(ω)Bj(ω) dP(ω) (2.1.10)

with (Ω,P) the hidden probability distribution. For each ω ∈ Ω we have that Ai(ω) = ±1,
Bj(ω) = ±1. In our finite context we find

γij =
∑
k

p(k)Ai(k)Bj(k). (2.1.11)

Hence γ = (γi,j)
N
i,j=1 can be written as a classical correlation matrix. We denote the set of classical

correlation matrices of dimension N ×N as Ccl(N).

In the quantum mechanical setting we describe a bipartite system with a quantum state ρ ∈
S(Cn×n⊗Cn×n). In this case, it holds

Output of Alice’s measurement Ai: POVM {Ei,1−Ei}
Output of Bob’s measurement Bj : POVM {Fj ,1−Fj}
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and we obtain
p(i′, j′) = P (Ai = i′, Bj = j′)

=


Tr[(Ei⊗Fj)ρ] if (i′, j′) = (1, 1)

Tr[((1−Ei)⊗ Fj)ρ] if (i′, j′) = (−1, 1)

Tr[(Ei⊗(1−Fj))ρ] if (i′, j′) = (1,−1)

Tr[((1−Ei)⊗ (1−Fj))ρ] if (i′, j′) = (−1,−1)

(2.1.12)

Hence we get

γij = E[AiBj ] = [p(1, 1) + p(−1,−1)]− [p(1,−1) + p(−1, 1)]

= Tr[(Ei⊗Fj +(1−Ei)⊗ (1−Fj)− Ei⊗(1−Fj)− (1−Ei)⊗ Fj)ρ]

= Tr[((1−2Ei)⊗ (1−2Fj))ρ]

(2.1.13)

Note that 1−2Ei and 1−2Fj are self-adjoint and we have ∥1−2Ei∥ ≤ 1 and ∥1−2Fj∥ ≤ 1. At

this point it is noteworthy that every operator O with ∥O∥ ≤ 1 can actually be written as 1−2E.
This gives rise to the following definition:

Definition. 2.1.1 (Quantum correlation matrix)

We have that

γ = (γi,j)
N
i,j=1 (2.1.14)

is a quantum correlation matrix if there exist self-adjoint operators A1, . . . , AN , B1, . . . , BN acting

on Cn such that max
i,j=1,...,N

{∥Ai∥ , ∥Bj∥} ≤ 1 and a state ρ acting on Cn×Cn such that

γi,j = Tr[Ai ⊗Bj ρ] , ∀i, j = 1, . . . , N .

We denote the set of quantum correlation matrices of size N with Cq(N).

Proposition. 2.1.2 We have that Ccl(N) ⊆ Cq(N).

Proof. Consider γ ∈ Ccl(N). Then, for a fixed size N , we can always assume that the γi,j are

defined as:

γi,j =

K∑
k=1

p(k)Ai(k)Bj(k) (2.1.15)

Consider now the matrices given by

Ai =



Ai(1) 0 . . . 0

0 Ai(2) 0 . . . 0
... 0

. . .
...

...
...

. . . 0

0 0 . . . 0 Ai(k)


(2.1.16)

and

Bj =



Bj(1) 0 . . . 0

0 Bj(2) 0 . . . 0
... 0

. . .
...

...
...

. . . 0

0 0 . . . 0 Bj(k)


. (2.1.17)

Take ρ =
K∑

k=1

p(k) |kk⟩ ⟨kk|. Then, it clearly holds that

Tr[(Ai ⊗Bj)] =

K∑
k=1

p(k)Ai(k)Bj(k) = γi,j , ∀i, j . (2.1.18)
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Moreover, since Ai and Bj are clearly self-adjoint, we conclude that γ ∈ Cq(N).

We notice the following properties of Ccl(N) and Cq(N):

• Both are convex sets.

• Ccl(N) is a polytope, and thus it has a finite number of extreme points. Its facets are usually

called ”correlation Bell inequalities”.

Definition. 2.1.3 (Bell inequalities)

In the above framework the Bell inequalities are given by

N∑
i,j=1

Mijγij ≤ C , .∀γ = (γi,j)
N
i,j=1 ∈ Ccl(N) . (2.1.19)

with M = (Mi,j)
N
i,j=1 the coefficients of the corresponding inequality and C an independent term.

Example. (CHSH) In the case of the CHSH inequality,

M =

(
1 1

1 −1

)
(2.1.20)

and C = 2. Moreover, there exist some correlations γ̂ij such that

N∑
i,j=1

Mi,j γ̂i,j = 2
√
2. (2.1.21)

This means γ̂ violates the corresponding Bell inequality, meaning Ccl(N) ⊊ Cq(N).

Definition. 2.1.4 (Classical value)

Given M = (Mij)
N
i,j=1 with real entries, we can associate

∣∣∣ N∑
i,j=1

Mi,jγi,j

∣∣∣ ≤ ω(M) (2.1.22)

with

ω(M) := sup
{∣∣∣ N∑

i,j=1

Mi,jγi,j

∣∣∣ : γ = (γi,j) ∈ Ccl(N)
}

= sup
{∣∣∣ N∑

i,j=1

Mi,jxiyj

∣∣∣ : xi = ±1, yj = ±1 ∀i, j = 1, . . . , N
}
.

(2.1.23)

Note that the last equality follows by convexity. We then call ω(M) the classical value of M .

Remark. By abuse of notation, we will sometimes call M above just a Bell inequality.

Definition. 2.1.5 (Quantum value)

Analogously we can define for M = (Mij)
N
i,j=1 with real entries, the quantum value as

ω∗(M) := sup
{∣∣∣ N∑

i,j=1

Mi,jγi,j

∣∣∣ : γ = (γi,j)
N
i,j=1 ∈ Cq(N)

}
(2.1.24)

Definition. 2.1.6 (Largest violation)

For M = (Mi,j)
N
i,j=1 with real entries, we define the largest violation as

LV(M) :=
ω∗(M)

ω(M)
(2.1.25)

It is clear that Ccl(N) ⊆ Cq(N) is equivalent to ω∗(M) ≥ ω(M), which is equivalent to LV(M) ≥ 1

for all M .
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Example. (CHSH) For the CHSH example we get

ω(M) ≤ 2, ω∗(M) = 2
√
2 (2.1.26)

hence LV(M) ≥
√
2. As an interesting note, this value is not far from being optimal, as we will

see in a few pages.

Before stating and proving the main result of this section, namely Tsirelson’s theorem, we need

to introduce a previous notion which we will use in its proof.

Definition. 2.1.7 (CAR-algebra)

Given N ≥ 2, a set of operators X1, . . . , XN is said to satisfy the Classical Anticommutation

Relations if:

• X∗
i = Xi ∀i = 1, . . . , N .

• XiXj +XjXi = {Xi, Xj} = 2δij 1 ∀i, j = 1, . . . , N .

An idea to construct such a set of operators is via the Pauli matrices. For even N (i.e. N = 2m),

we have
X1 = X ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸

m

X2 = Y ⊗ 1⊗ . . .⊗ 1

X3 = Z ⊗X ⊗ 1⊗ . . .⊗ 1 X4 = Z ⊗ Y ⊗ 1⊗ . . .⊗ 1
...

...

X2m−1 = Z ⊗ Z ⊗ . . .⊗ Z ⊗X X2m = Z ⊗ Z ⊗ . . .⊗ Z ⊗ Y

(2.1.27)

If N is odd, we further add the element X2m+1 = Z ⊗ Z ⊗ . . .⊗ Z ⊗ Z.
Now we are in position to state and prove the following formulation of Tsirelson’s theorem (we

will also introduce another reformulation for it later in the text).

Theorem. 2.1.8 (Tsirelson’s theorem) Let γ = (γi,j)
N
i,j=1 be a correlation matrix with real

entries. Then, the following are equivalent:

1. γ ∈ Cq(N).

2. ∃ normalised x1, . . . , xN , y1, . . . , yN in a real Hilbert space such that

γij = ⟨xi, yj⟩ , ∀i, j = 1, . . . , N .

In particular,

ω∗(M) = sup
1=∥xi∥=∥yj∥

{∣∣∣ N∑
i,j=1

Mi,j ⟨xi, yj⟩
∣∣∣} (2.1.28)

Proof. 1. ⇒ 2. Consider the real vector space B(H1⊗H2)sa. We define the real Hilbert space as

H := (B(H1⊗H2)sa, ⟨·, ·⟩). The inner product is given by

⟨A,B⟩ = Re(Tr[ABρ]) (2.1.29)

for every A,B ∈ B(H1⊗H2)sa, where we get from γ the POVMs {Ai} in H1 and {Bj} in
H2, as well as ρ. We further define

H̃ := span{xi = Ai ⊗ 1 : i = 1, . . . , N} , (2.1.30)

and set P : H → H̃ the orthogonal projection from H to H̃. We further set

yj = P(1⊗Bj) ∀j = 1, . . . , N. (2.1.31)
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We then get a collection of x1, . . . , xN , y1, . . . , yN in a real Hilbert space with dim(H̃) = k ≤
N verifying

∥xi∥ ≤ 1, ∥yj∥ ≤ 1, γij = ⟨xi, yj⟩ = Tr[Ai ⊗Bjρ] ∀i, j = 1, . . . , N . (2.1.32)

Since the Ais and the Bjs are self-adjoint, we drop the Re in the trace above. Finally, since

their norms should be 1, we normalize them using the following procedure:

x̃i = xi ⊕
√
1− ∥xi∥2 ⊕ 0, ỹj := yj ⊕ 0⊕

√
1− ∥y∥2j (2.1.33)

2. ⇒ 1. Consider (RM , ⟨·, ·⟩), the real Hilbert space where (xi)
N
i=1, (yj)

N
j=1 live. Assume w.l.o.g.

that M is even. Then we can construct the products of M
2 Pauli matrices as introduced

above and define

T : Rm → span{X1, . . . , Xm}, ek 7→ Xk (2.1.34)

with the Xi constructed as in eq. (2.1.27). Then∥∥T : ℓm2 → (C2×2)⊗m
∥∥ ≤ 1 (2.1.35)

directly. In particular, for every x ∈ Rm with ∥x∥ ≤ 1, we have ∥T (x)∥ ≤ 1. Moreover, we

find
1

2
m
2
Tr[(Tx)(Ty)] = ⟨x, y⟩ ∀x, y ∈ RM . (2.1.36)

Consider further

|ψ⟩ = 1

2
M
4

M
2∑

i,j=1

|ij⟩ ∈ (C2×C2)⊗M (2.1.37)

which gives us that for A,B ∈ (C2×C2)⊗m,

1

2
M
2

Tr[AB] = Tr[A⊗B|ψ⟩⟨ψ|] = ⟨ψ|A⊗B|ψ⟩ . (2.1.38)

We define

Ai := T (xi), Bj := T (yj) ∀i, j = 1, . . . , N . (2.1.39)

Then, we obtain a family of self-adjoint operators with ∥·∥ ≤ 1 such that

⟨ψ|Ai ⊗Bj |ψ⟩ =
1

2
M
2

Tr[AiBj ] = ⟨xi, yj⟩ ∀i, j = 1, . . . , N (2.1.40)

2.1.3 Grothendieck’s Theorem

The main result of this section is Grothendieck’s theorem.

Theorem. 2.1.9 (Grothendieck’s Theorem) There exists a universal constant KG such that

∀N ∈ N, ∀(Mi,j)
N
i,j=1 ∈ RN×N ,

sup
{∣∣∣ N∑

i,j=1

Mi,j ⟨xi, yj⟩
∣∣∣ : ∥xi∥ = ∥yj∥ = 1 ∀i, j = 1, . . . N

}

≤ KG sup
{∣∣∣ N∑

i,j=1

Mi,jtisj

∣∣∣ : ti = ±1 , sj = ±1 ∀i, j = 1, . . . N
}
,

(2.1.41)

with KG the (real) Grothendieck’s constant:

1.67696 ≤ KG <
π

2 log(1 +
√
2)
. (2.1.42)
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We can rephrase that to

ω∗(M) ≤ KG ω(M) (2.1.43)

or, equivalently,

LV(M) ≤ KG. (2.1.44)

Example. CHSH. Let us recall that, for the example of the CHSH, we had

LV(MCHSH) ≥
√
2 .

Now we can confirm the previously mentioned statement that the bound obtained for the largest

violation of the CHSH inequality is relatively close to the optimal one, given by KG.

Before finishing this section and starting with nonlocal games, let us summarize what we have

discussed in the last pages. The idea for the use of quantum nonlocality in various fields of quantum

information appears with high frequency in the past few years. In certain fields such as quantum

communication or quantum cryptography, some quantum correlations which are not classical, so

that they violate a Bell inequality, can be used to define ”certain protocols”.

In general, Bell inequalities allow us to realize advantages of quantum mechanics with respect

to the classical theory. Therefore, in some sense, LV (M), for a certain Bell inequality M , can be

understood as a measure of ”how better is quantum mechanics than classical mechanics”. The

previous theorems, however, provide some limitations of quantum mechanics, as the violations for

Bell inequalities are bounded.

A natural question that arises is whether one can get larger violations of Bells inequality in a

broader context? This question was answered by Tsirelson with a yes by designing a three player

experiment, completely analogous to the two-player one.

fig. 2.2: Three player game.

In this case, we can follow a similar analysis as for the case of two players. First, the classical

correlations become

γi,j,k =

∫
Ω

Ai(ω)Bj(ω)Ck(ω) dP(ω) , (2.1.45)

with (Ω,P) the hidden probabilty. The quantum correlations are given by using that for γ =

(γijk)
N
i,j,k=1, there exists A1, . . . , AN , B1, . . . , Bn, C1, . . . , CN self adjoint and completely positive

acting on Cn with

max
i,j,k=1,...,N

{∥Ai∥ , ∥Bj∥ , ∥Ck∥} ≤ 1 (2.1.46)

and ρ a density operator acting on Cn×Cn×Cn with

γi,j,k = Tr[AiBjCkρ] ∀i, j, k = 1, . . . , N. (2.1.47)
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Finally, the classical and entangled value of a Bell inequality, as well as its largest violation,

are defined analogously to the case of the two-player scenario:

LV (M) =
ω∗(M)

ω(M)
.

Theorem. 2.1.10 (Tsirelson) For every D > 0, there exist a large enough N ∈ N and a Bell

inequality M = (Mijk)
N
i,j,k=1 such that

LV(M) ≥ D .

The most direct implication of this result is that, as soon as we consider three players, we get

an unlimited amount of violation of Bell inequalities. Moreover, the best estimate for D in terms

of N up to date is D ⋍ N4.

Consequently, the tripartite scenario allows for unlimited advantages by using quantum me-

chanics rather than with classical mechanics.

2.2 Non local games

In this section, we introduce the notion of non-local games and translate the results of non-locality

introduced in the previous pages to the context of games. Unless we explicitly say it, we are only

going to consider games with two players, Alice and Bob, and a referee, Charlie, as in the following

picture. This section is largely inspired in [21, 12].

fig. 2.3: Sketch of non-local games.

In Figure 2.3, we see schematically the construction of a non-local game with two players and

one referee. The latter one sends a question x ∈ X to the first player, Alice, and another question

y ∈ Y to the other player, Bob. This is done simultaneously, but Alice and Bob cannot share any

information, so they do not know about the question received by the other. Then, after receiving

x ∈ X, Alice answers with a ∈ A, and Bob acts analogously replying with b ∈ B. Both answers are

sent to Charlie, who checks the answers to the given questions following a protocol named verifier,

and decides whether Alice and Bob won or lost the game. The goal is, of course, to win the game

as often as possible, and for that, Alice and Bob need to agree prior to the game on a common

strategy.

Let us study all these notions formally, by mathematically introducing the concept of non-local

game.
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Definition. 2.2.1 (Non local game)

A non-local game is a 6-tuple G, with G = (X,Y,A,B,Π, V ) such that

1. X,Y are sets of questions and A,B are corresponding sets of answers. Both are finite (and

non-empty) sets.

2. Π ∈ P(X,Y ) is a probability vector (over the questions).

3. V : A×B ×X × Y → {0, 1} is a predicate, which is basically the referee/verifier, defined as

V (a, b|x, y) ≡ V (a, b, x, y) =

1 if answering (a, b) to (x, y) WINS

0 if answering (a, b) to (x, y) LOSES
(2.2.1)

Let us show now some examples of basic non-local games and their sets of questions, answers,

probability vectors and predicates.

Example. CHSH game. We set X = Y = A = B = {0, 1} and the probability vector is given

by:

Π(0, 0) = Π(1, 0) = Π(0, 1) = Π(1, 1) =
1

4
.

The predicate is

V (a, b|x, y) =

1 a⊕ b = x ∧ y

0 a⊕ b ̸= x ∧ y
, (2.2.2)

where a⊕ b denotes a XOR b and x ∧ y is x AND y.

Example. FFL game. The name stands for Fortnau, Feige and Lorasz, who first came up

with the example. In this case, we set X = Y = A = B = {0, 1}, and the probability vector is

given by:

Π(1, 1) = 0,Π(0, 1) = P(1, 0) = Π(0, 0) =
1

3
.

Moreover, the predicate is now given by

V (a, b|x, y) =

1 a ∨ x ̸= b ∨ y

0 a ∨ x = b ∨ y
, (2.2.3)

where a ∨ x denotes a OR x.

Example. Graph coloring game. We set H = (V,E) to be an undirected graph, with

n = |V |, m = |E|, m ≥ 1, and we take k ∈ N. Let us consider the questions X = Y = {1, . . . , n}
and the answers A = B = {1, . . . , k}, which are called colors. We further set the probability vector

Π(x, y) =


1
2n x = y

1
4m x ̸= y (x adjacent to y)

0 otherwise

(2.2.4)

and the predicate

V (a, b|x, y) =


1 x = y, a = b

1 x ̸= y, a ̸= b

0 otherwise

. (2.2.5)

Note that this game is used to model the problem of coloring of a graph. Namely, given a set of

colors, which is the minimal number of colors we need so that we can associate a color to each
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vertex in such a way that two adjacent vertices have different colors. It is not difficult to realize

that winning the previous game with certainty 1 for a certain number of colors k implies that the

graph of such a problem can be completely colored according to this rule. We will go in further

detail on this later in the text.

As mentioned above, the main purpose of Alice and Bob is winning their non-local game as

often as possible, and for that they need to devise a previous strategy that they can use when

playing the game. We show below a list of different forms of strategies, depending on the tools

that Alice and Bob are allowed for such a game (i.e., the type of measurements that can be used

to determine their answers, given their questions).

Definition. 2.2.2 (Strategies for non local games)

1. Deterministic strategies: This is the simplest possible case. In this form of strategy,

Alice and Bob consider some deterministic functions and associate to each question a certain

answer prior to the game. In detail, they consider:

f : X → A, g : Y → B (x, y) 7→ (f(x), g(y)) , (2.2.6)

and given any question pair (a, b), they output the answer (f(x), g(y)). Note that, in this

whole procedure, they do not commute during the came. Moreover, note that this strategy

is completely classical, as no quantum information is employed whatsoever.

2. Randomized strategy: This is slightly more involved that the previous case, but the

probability for winning is the same as before, and it does not use any quantum information

either. The only difference with respect to the case above is that, now, answers are not

predetermined, given the questions, but they are drawn from the sets of answers randomly,

using some probability distributions for that. As these strategies are just a random selection

of deterministic strategies, the benefit of this case with respect to the previous one in our

problem is none.

3. Entangled strategy: In a similar fashion as in the non-locality scenarios presented in the

previous section, Alice and Bob share a (hopefully entangled) quantum state |ψ⟩ ∈ HA⊗HB

in a finite-dimensional bipartite Hilbert space. The strategy is then

• Given x ∈ X, Alice performs a POVM {P x
a }a∈A only on HA and sends the output

observed as an answer.

• Given y ∈ Y , Bob performs a POVM {Qy
b}b∈B only on HB and sends the output

observed as an answer.

Then, the probability of answering (a, b) to (x, y) is given by

P (x, y, a, b) = ⟨P x
a ⊗Q

y
b |ρ⟩ ,

with ρ = |ψ⟩ ⟨ψ|.

4. Commuting strategy: This strategy is similar to the previous one. Now, Alice and Bob

also share a quantum state |ψ⟩ ∈ H, but now in a possibly infinite-dimensional Hilbert space.

The strategy is then defined as follows:

• Given x ∈ X, Alice performs a POVM {P x
a }a∈A on the whole H and sends the output

observed as an answer.
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• Given y ∈ Y , Bob performs a POVM {Qy
b}b∈B on the whole H and sends the output

observed as an answer.

Then, the probability of answering (a, b) to (x, y) is given by

P (x, y, a, b) = Tr[P x
aQ

y
bρ] ,

with ρ = |ψ⟩ ⟨ψ|. For tractability of the previous quantity, we have to assume in this case

that [P x
a , Q

y
b ] = 0 ∀a, b, x, y.

2.2.1 Values of a non-local game

Once we have introduced the different strategies that Alice and Bob can consider for their non-local

game, we can associate to each strategy the notion of the value of the non-local game. In general,

this is just the maximal success probability for Alice and Bob in the game.

Definition. 2.2.3 (Value of a game)

Consider a non-local game G = (X,Y,A,B,Π, V ). The maximal success probability for Alice and

Bob is given by

1. Classical value. This is the value associated to a non-local game, assuming that the strat-

egy followed by Alice and Bob was deterministic or randomized (in any case, no quantum

information considered). The maximal success probability in this case is:

ωc(G) ≡ ω(G) := max
f:X→A,
g:Y→B

∑
(x,y)∈X×Y

Π(x, y)V (f(x), g(y)|x, y) (2.2.7)

2. Entangled value. In this case, the strategy considered is an entangled one. The quantum

(or entangled) value is computed taking the supremum over all possible entangled strategies

of the following quantity:

ωq(G) ≡ ω∗(G) = sup
ψ∈HA ⊗HB
{Pxa }a∈A
{Qx
b
}b∈B

∑
(x,y)∈X×Y

Π(x, y)
∑

(a,b)∈A×B

⟨ψ|P x
a ⊗Q

y
b |ψ⟩V (a, b|x, y) (2.2.8)

with {P x
a }a∈A and {Qx

b }b∈B POVMs on HA and HB respectively.

3. Commuting operator value. In an analogous way to the previous value, we introduce the

commuting operator value by taking supremum now over all possible commuting strategies:

ωco(G) := sup
ψ∈HA ⊗HB
commuting
strategies

∑
(x,y)∈X×Y

Π(x, y)
∑

(a,b)∈A×B

⟨ψ|Qy
bP

x
a |ψ⟩V (a, b|x, y) (2.2.9)

Given all these notions for values of a game, we can compute at least the previous two ones

(classical and entangled values) for the examples of non-local games introduced above.

Example. CHSH game. We can compute the classical and entangled values for the CHSH

game, respectively. We leave as an exercise to show that that

ωc(GCHSH) =
3

4
, and ωq(GCHSH) = cos2

(π
8

)
.

In this case, using a quantum strategy, the average win probability is strictly better than what is

possible using a classical one.
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Example. FFL game. For this game, we can also compute the classical and entangled values

for the CHSH game, which we also leave as an exercise. In this case, we have:

ωc(GCHSH) =
2

3
= ωq(GCHSH) .

In this case, quantum strategies and classical ones can perform equally well. Note that, in both

examples, computing the classical values is just done by testing all deterministic strategies.

Example. Graph coloring game. Given k ∈ N, the fact that ω(G) = 1 is equivalent to the

chromatic number of H being at most k. Moreover, there are known H, k ∈ N , for which ω(G) < 1

and ω∗(G) = 1

Let us conclude this subsection by collecting some of the information we already have about

values of games.

1. Derived from the increasing order in the restrictivity for the strategies presented above, we

find a hierarchy in values for games, namely ωc(G) ≤ ωq(G) ≤ ωco(G).

2. For the CHSH game in particular, we find that ωc(G) < ωq(G).

2.2.2 Correlations

In this subsection, we aim at introducing the notion of correlations, derived from the strategies

for non-local games presented above. Therefore, we will be able to associate sets of correlations to

values of non-local games.

Definition. 2.2.4 (Correlations)

Let us fix the sizes of the sets of questions and answers to |X| = m, |Y | = n, |A| = k, |B| = l.

In general, we will will write the sizes of the four involved sets as a superscript in the set of

correlations, but we will drop them when they are clear from the context. Then, we define the

following various sets of correlations:

• The set of classical correlations (which we will not study in detail in this text) is denoted

by

Ccl ≡ Cm,n,k,l
cl . (2.2.10)

• The set of quantum correlations is given by

Ck,l,m,n
q :=

p(a, b|x, y) = ⟨ψ|P x
a ⊗Q

y
b |ψ⟩ :

|ψ⟩ ∈ H normalised , {Px
a }a∈A, {Qy

b}b∈B

an entangled strategy,

on HA and HB finite dimensional


(2.2.11)

• The set of quantum spatial correlations is defined in an analogous way to the set of

quantum correlations, but now we allow for infinite-dimensional Hilbert spaces

Ck,l,m,n
qs :=

p(a, b|x, y) = ⟨ψ|P x
a ⊗Q

y
b |ψ⟩ :

|ψ⟩ ∈ H normalised , {Px
a }a∈A, {Qy

b}b∈B

an entangled strategy,

on HA and HB possibly ∞-dimensional


(2.2.12)

• The set of quantum correlations well-approximated by tensor products (finite-

dimensional) is by definition

Ck,l,m,n
qa := Ck,l,m,n

q (2.2.13)
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• The set of quantum commuting correlations is denoted by

Ck,l,m,n
qc ≡ Ck,l,m,n

co =

p(a, b|x, y) = ⟨ψ|Qy
bP

x
a |ψ⟩ :

|ψ⟩ ∈ H normalised , {Px
a }a∈A, {Qy

b}b∈B

a commuting strategy

on H (possibly infinite dimensional)


(2.2.14)

If we fix m,n, k, l we find the following chain of (strict) inclusions

Ccl ⊊ Cq ⊊ Cqs ⊊ Cqa ⊊ Cco (2.2.15)

The inclusions of the previous chain are relatively straightforward, just by considering the definition

for each of the sets of correlations involved. The fact that all of them are strict, though, is much

more involved. First, note that the fact that there are quantum correlations which are not classical

is due to Bell’s theorem in 1964. Moreover, the problem of proving that there are (quantum)

correlations in any of the other sets which do not belong to the previous one has been a very active

field of research in the past few years, giving rise to some seminal works in the last decade. The

timeline of the discoveries is the following:

• (Bell ’64) As a starting point for the previous chain of inequalities, in 1964 Bell proved in

[1] that there are quantum correlations which are not classical:

Ccl = Cq .

• (Tsirelson, ’06) For the set of commuting quantum correlations, we alllow for infinte-

dimensional Hilbert spaces in general. In 2006, Tsirelson showed that, if we restrict to

finite-dimensional Hilbert spaces, then

Cq = Cfiniteco .

The question whether the same situation could hold for infinite-dimensional Hilbert spaces

was then named after him Tsirelson’s problem. With the appearance of the next results

mentioned below, this problem was reduced to the question whether the last two sets of

correlations presented in the previous chain of inclusions coincide or not.

• (Scholz & Werner, ’08) Two years after Tsirelson’s result for finite-dimensional Hilbert

spaces, Scholz and Werner extended it in [13] to the so-called ”effectively finite-dimensional”,

i.e. to finite-dimensional von Neumann algebras.

• (Slofstra, ’16 and ’17) Almost a decade later, Slofstra showed in 2016 in [18] that that

there are quantum commuting correlations which are not quantum spatial ones,

Cqs ̸= Cco ,

and a year later he showed in [17] that the set of quantum spatial correlations is not closed,

yielding then

Cqs ⊊ Cqa .

• (Coladangelo-Stark, ’18) In 2018, Coladangelo and Stark found in [6] a particular set of

values of m,n, k, l for which there are quantum spatial correlations (in infinite-dimensional

Hilbert spaces) which are not quantum correlations (in finite-dimensional Hilbert spaces),

i.e.

Cq ⊊ Cqs .

More specifically, they showed:

C4,5,3,3
q ̸= C4,5,3,3qs .
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• (MIP* = RE, ’20) Finally, in the major breakthrough [9], Ji et al. showed that, in general,

Cqa ⊊ Cco .

This solved in the negative the aforementioned Tsirelson’s problem, as well as the well-

known Connes embedding problem, which had been previously shown to be equivalent

to Tsirelson’s problem.

2.2.3 Non-local games as hyperplanes

Before moving to the next section, in which we will provide an approach to finding quantum values

for non-local games using semidefinite programs, here we give a reinterpretation of non-local games

as hyperplanes. Previously, we need the following technical lemma.

Lemma. 2.2.5 The sets of correlations Cqs, Cqa and Cco are all convex.

Proof. • Let us show that Cqs is convex. For that, we need to show that, given two correlations

P1, P2 ∈ Cqs, and λ ∈ [0, 1], we then have λP1 + (1− λ)P2 ∈ Cqs.

Since P1, P2 ∈ Cqs, we set

Pi := pi(a, b|x, y) = ⟨ψi|P (i)x
a ⊗Q(i)y

b |ψi⟩ i = 1, 2 (2.2.16)

on some Hilbert spacesH(i)
A andH(i)

B , with |ψi⟩ ∈ H(i)
A ⊗H

(i)
B . We then construct a correlation

from them. For that, we need to properly define the Hilbert spaces, the POVMs and the

state:

– We construct the new Hilbert space combining the previous ones in the following form:

(H(1)
A ⊕H

(2)
A )⊗ (H(1)

B ⊕H
(2)
B )

∼= (H(1)
A ⊗H

(1)
B )⊕ (H(1)

A ⊗H
(2)
B )⊕ (H(2)

A ⊗H
(1)
B )⊕ (H(2)

A ⊗H
(2)
B ) .

(2.2.17)

– Each of the POVMs is constructed as a direct sum of the ones associated to P1 and P2,

namely:

P x
a = P (1)x

a ⊕ P (2)x
a ,

Qy
b = Q

(1)y
b ⊕Q(2)y

b .
(2.2.18)

– Finally, the state is defined combining the previous ones and normalizing it:

|ψ⟩ =
√
λ |ψ1⟩ ⊕ 0⊕ 0⊕

√
1− λ |ψ2⟩ . (2.2.19)

It is clear that these three elements define a quantum spatial correlation and, moreover, that

this correlation coincides with

λP1 + (1− λ)P2 .

• To prove that Cqa is convex, note that Cqa = Cqs and the closure of a convex set is convex.

• Finally, the proof for Cco is completely analogous to that of Cqs.

With this idea on mind, we can compare correlations to separating hyperplanes.
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Definition. 2.2.6 (Separating hyperplane)

Given an element H = (Ha,b,x,y)a,b,x,y ∈ Rm,n,k,l, H can be regarded as a linear functional acting

on the correlation (P (a, b|x, y))a,b,x,y as follows:

⟨H,P ⟩ =
∑

a,b,x,y

Ha,b,x,yP (a, b|x, y). (2.2.20)

Therefore, it is reasonable to define a maximal value of a given hyperplane H with respect to a set

C of correlations

max
C

(H) = sup
P∈C
| ⟨H,P ⟩ | (2.2.21)

This allows us to establish an identification between correlations and values of non-local games;

e.g. Cco ↔ ωco(G).

Remark. We conclude from the previous identification that non-local games are just hyperplanes

with positive coefficients.

2.3 Semi-definite programs for the entangled bias of a XOR

game

In this section, we will introduce semi-definite programs (SDPs) which will allow us to compute

the entangled bias of a XOR game (and, thus, the entangled value). Before introduce the SDPs,

let us recall the notions of bias of a game and XOR games.

Definition. 2.3.1 (XOR games)

XOR games are a restricted type of non-local games G = (X,Y,A,B,Π, V ) in which there are only

two answers for each player, namely A = B = {0, 1}. Moreover, in this case the predicate is given

by

V (a, b|x, y) =

1 a⊕ b = f(x, y)

0 a⊕ b ̸= f(x, y)
, (2.3.1)

for a function f : X × Y → {0, 1}. Then, we can just identify the game with G = (X,Y,Π, f).

Example. CHSH game. The CHSH game is a particular case of a XOR game, since it is of

the form ({0, 1}, {0, 1},Π, f) for f(x, y) = x ∧ y.

Definition. 2.3.2 (Bias of a game)

The bias of a strategy is the difference between the probability of winning it and the probability

of losing it using that strategy. Moreover, the bias of a XOR non-local game is the supremum of

the biases over all strategies considered for that game.

Since the probability of winning plus the probability of losing a game is 1, the classical and

entangled biases for a XOR non-local game G are given by

E(G) = 2ω(G)− 1 , E∗(G) = 2ω∗(G)− 1 ,

or, equivalently, we have

ω(G) =
1 + E(G)

2
, ω∗(G) =

1 + E∗(G)
2

.

Let us discuss now how XOR game strategies can be described by observables. Let us consider

a XOR game G = (X,Y,Π, f) and consider a entangled strategy for the game, represented by a

state ρ ∈ S(HA⊗HB) and measurement operators

{P x
0 , P

x
1 } POVMs in HA and{Qy

0, Q
y
1} POVMs in HB .
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Consider the following quantity:∑
(x,y)∈X×Y

Π(x, y)(−1)f(x,y) Tr[(P x
0 − P x

1 )⊗ (Qy
0 −Q

y
1)ρ] .

It is clear that the supremum over this quantity coincides with the bias of a game described above.

Moreover, if we define Ax := P x
0 − P x

1 and By := Qy
0 − Q

y
1, these two operators are observable.

Therefore, the bias of a game can be computed as the supremum of the quantity∑
(x,y)∈X×Y

Π(x, y)(−1)f(x,y) Tr[Ax ⊗Byρ] ,

over observables {Ax}x∈X and {By}y∈Y with ∥Ax∥ , ∥By∥ ≤ 1 for every x ∈ X and y ∈ Y .

Let us move now to the definition of the SDPs for computing the entangled value of certain

XOR games. Before introducing the formal definition, we need the following reformulation of

Tsirelson’s theorem, which we will not prove here, as the proof completely resembles that of the

original version for the theorem presented above.

Proposition. 2.3.3 For X,Y ̸= ∅ and M ∈ B(R|Y |,R|X|), the following are equivalent:

1. There exist complex Hilbert spaces HA,HB, as well as ρ ∈ S(HA⊗HB) a density operator

and {Ax : x ∈ X} ⊆ B(HA)sa, {By : y ∈ Y } ⊆ B(HB)sa such that

∥Ax∥ ≤ 1 , ∥By∥ ≤ 1 , M(x, y) = ⟨Ax⊗By, ρ⟩ ∀x ∈ X , ∀y ∈ Y .

2. There exists positive semi-definite operators R ∈ B(C|X|)+, S ∈ B(C|Y |)+, R(x, x) = 1,

S(y, y) = 1 ∀x ∈ X, ∀y ∈ Y , such that(
R M

M∗ S

)
≥ 0 . (2.3.2)

Let us recall that the entangled bias introduced above is defined by

E∗(G) = 2ω∗(G)− 1 (2.3.3)

and can be equivalently obtained by means of the following formulation:

E∗(G) := sup
POVMs {Pxa }a∈A, {Q

y
b
}b∈B

ρ∈S(HA ⊗HB)

∑
(x,y)∈X×Y

Π(x, y)(−1)f(x,y) Tr[P x
a ⊗Q

y
bρ]. (2.3.4)

By the reformulation of Tsirelson’s theorem presented in this section, namely Proposition 2.3.3,

this is equivalent to

sup
∑

(x,y)∈X×Y

Π(x, y)(−1)f(x,y)M(x, y) , (2.3.5)

over M ∈ B(R|X|,R|Y |) such that there exist R ∈ B(C|X|)+, and S ∈ B(C|Y |)+, with R(x, x) = 1,

S(y, y) = 1, ∀x ∈ X, ∀y ∈ Y , and (
R M

M∗ S

)
≥ 0

This gives us an idea of how to construct an SPD for estimating the entangled bias of a XOR game

by defining

D(x, y) = Π(x, y)(−1)f(x,y) . (2.3.6)
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Moreover, we need to define ∆ ∈ B(B(C|X| ⊕ C|Y |)) as the complete dephasing channel (zeroing

out the non-diagonal entries of a density matrix and leaving the diagonal entries unmodified; we

will provide more details on this channel in the next chapter). Further, let us denote

H :=
1

2

(
0 D

D∗ 0

)
H ∈ B(C|X|⊕C|Y |) . (2.3.7)

We are now in position of introducing the desired SDP.

Definition. 2.3.4 (SDP for XOR non-local games)

A semi-definite program (SDP) to compute the entangled bias of a XOR game is denoted by

(∆, H,1C|X| ⊕C|Y |) and is given by the following two equivalent formulations:

Primal Problem Dual Problem

maximize ⟨H,Z⟩ minimize Tr[ω]

subject to ∆(Z) = 1C|X| ⊕C|Y | subject to ∆(ω) ≥ H
Z ∈ B(C|X|⊕C|Y |)+ ω ∈ B(C|X|⊕C|Y |)sa

In the dual problem, we have used that the completely dephasing channel is self-adjoint, i.e.

∆ = ∆∗.

Strong duality and achievability of optimal values in both the primal and the dual problems

follow from Slater’s theorem. A feasible solution Z for the primal problem is Z = 1C|X| ⊕C|Y | ,

while for the dual problem a feasible solution ω is ω = λ1C|X| ⊕C|Y | for λ large enough.

2.3.1 Primal problem

Let us verify that the optimal value in the primal problem indeed agrees with the entangled bias

of the XOR game G.

Assume thatM ∈ B(R|X|,R|Y |) is such that there exist R ∈ B(C|X|)+, and S ∈ B(C|Y |)+, with

R(x, x) = 1, S(y, y) = 1, ∀x ∈ X, ∀y ∈ Y ,

Z :=

(
R M

M∗ S

)
∈ B(C|X|⊕C|Y |)+ . (2.3.8)

We need to check that the conditions of the primal problem are satisfied:

• Z is primal feasible, since ∆(Z) = 1C|X| ⊕C|Y | is equivalent to R and S having diagonal

entries equal to 1, which is something we are assuming for our R and S.

• The objective value is

⟨H,Z⟩ = 1

2
⟨D,M⟩+ 1

2
⟨D∗,M∗⟩ = ⟨D,M⟩ . (2.3.9)

Since

⟨D,M⟩ =
∑

(x,y)∈X×Y

Π(x, y)(−1)f(x,y)M(x, y) , (2.3.10)

then the optimal value of the (primal) SDP is at least E∗(M).

Let us check now that they actually coincide, for which we consider Z ∈ B(C|X|⊕C|Y |)+ expressed

as

Z =

(
R K

K∗ S

)
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with R ∈ B(C|X|)+, S ∈ B(C|Y |)+, K ∈ B(C|X|,C|Y |). Moreover, note that

∆(Z) = 1C|X| ⊕C|Y | ↔ R,S only having 1s in diagonal. (2.3.11)

Since K might not have real number entries, we write

⟨H,Z⟩ = 1

2
⟨D,K⟩+ 1

2
⟨D∗,K∗⟩ = ⟨D,M⟩ (2.3.12)

with M = K+K∗

2 , as D has real entries. From this it follows that

1

2

(
R K

K∗ S

)
+

1

2

(
R K

K∗ S

)T

=

(
R+RT

2 K

K∗ S+ST

2

)
≥ 0 , (2.3.13)

and the diagonal entries of both R+RT

2 and S+ST

2 are 1. Then, ⟨D,M⟩ is no larger than E∗(G).

2.3.2 Dual problem

Now, let us check what the outcome of the dual problem is. Without loss of generality, let us

assume that

ω =
1

2

(
Diag(u) 0

0 Diag(v)

)
≥ 0 ,

for u ∈ R|X| and v ∈ R|Y |. The objective function is given by

Tr[ω] =
1

2

∑
x∈X

u(x) +
1

2

∑
y∈Y

v(y) ,

and then the constraint in such an objective function is equivalent to

ω =

(
Diag(u) −D
−D Diag(v)

)
≥ 0 .

2.3.2.1 SDP for XOR games, simplified

Considering the information presented just above for both formulations of the SDPs for the XOR

games, we can write the following simplified reformulations:

Primal Problem Dual Problem

max ⟨D,M⟩ min 1
2

∑
x∈X

u(x) +
∑
y∈Y

v(y)

subject to

(
R M

M∗ S

)
≥ 0 subject to

(
Diag(u) −D
−D∗ Diag(v)

)
≥ 0

R(x, x) = 1 ∀x u ∈ R|X|, v ∈ R|Y |

S(y, y) = 1 ∀y
R ≥ 0

S ≥ 0

M ∈ B(R|Y |,R|X|)

Example. (CHSH game) For the primal problem, in this case,

D =
1

4

(
1 1

1 −1

)
.

We consider the following candidate for M :

M =
1√
2

(
1 1

1 −1

)
.



60 CHAPTER 2. QUANTUM NONLOCALITY

For R = S = 1, it is clear that

Z =

(
R M

M∗ S

)
≥ 0 .

Moreover, since the diagonal of R and S is clearly composed only of 1s, then Z is primal feasible

and ⟨D,M⟩ = 1/
√
2, which coincides with the known entangled bias for the CHSH game.

Now, for the dual problem, we can consider

u =

(
1

2
√
2
,

1

2
√
2

)
, v =

(
1

2
√
2
,

1

2
√
2

)
,

which is dual feasible, and then, the objective value is

1

2

∑
x∈X

u(x) +
∑
y∈Y

v(y) =
1√
2
.

Therefore, in this way we also obtain that the entangled bias for the CHSH game is 1√
2
.



Chapter 3

Quantum Channels

In this chapter, we will introduce the main elements for the transmission of quantum information,

namely quantum channels. For an overview on this topic, we recommend the lecture notes [24],

which provide a wide collection of properties and results concerning completely positive and trace-

preserving maps, a.k.a. quantum channels.

However, before starting with the first definitions and properties of quantum channels, we need

to recall some notions which might be of use during this chapter. Since they are relatively external

to the main topic of this chapter, we collect all of them in a section of preliminaries.

3.1 Preliminaries

3.1.1 Bloch Sphere

In this subsection, we introduce the Bloch sphere, which is frequently used in many applications

in quantum information theory and will help us in the next pages to describe some aspects in an

easier way. For that, we need to recall the Pauli-Matrices

1 =

(
1 0

0 1

)
, X =

(
0 1

1 0

)

Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

). (3.1.1)

They form a basis of M2×2(C). We find that for M ∈M2×2(C)

M =
1

2
(x0 1+x⃗ · γ⃗) (3.1.2)

with x0 = Tr[M ], x⃗ ∈ C3, and x⃗ · σ⃗ =
3∑

i=1

xiσi. Note that

1. M is Hermitian if and only if x0 and x⃗ are real.

2. M ≥ 0 if and only if ∥x⃗∥2 ≤ x0

In particular for ρ ∈ S(C2×2) we find

ρ =
1

2
(1+x⃗ · γ⃗) (3.1.3)

with ∥x⃗∥2 ≤ 1. We call this the Bloch ball and further for ∥x⃗∥2 = 1 the Bloch sphere. The closer

we get to the center, the more mixed ρ becomes.

We further define

61
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fig. 3.1: Bloch sphere.

• The purity as

Tr[ρ2] =
1

2
(1 + ∥x⃗∥2) (3.1.4)

• For x⃗ = 0, we have the maximally mixed state.

Then, we have the following connection between two different classes of objects:

Orthogonal rotations ←→ Unitaries at the level

on the Bloch ball of density matrices

using the identification map

ρ 7→ Ux⃗,θ ρU
∗
x⃗,θ (3.1.5)

with

Ux⃗,θ = e−iθ x⃗·γ⃗2 = 1 cos(θ/2)− ix⃗ · γ⃗ sin(θ/2) . (3.1.6)

Since every unitary is of this form up to a phase, this in particular shows the following well-known

relation between SO(3) and SU(2):

SO(3) ∼= SU(2)/{+1,−1} . (3.1.7)

Moreover, in general, we have for qubits

|ψ⟩ = cos(θ/2) |0⟩+ eiφ sin(θ/2) |1⟩ (3.1.8)

for 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.

3.1.2 Born’s Rule

Any experiment can be described following Born’s rule as in the following Figure:
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Preparation Measurement Output

ρ ∈ B(H)
ρ ≥ 0

Tr[ρ] = 1

M : B(H)→ B(H)
M = (Mk)k

Mk ≥ 0∑
kMk = 1

Probability

p(k|ρ,M)
q

Tr[ρMk]

fig. 3.2: Schematic representation of an experiment.

3.1.3 Composite systems

Let H1,H2 finite dimensional Hilbert spaces. We consider the composite Hilbert space H1⊗H2.

Theorem. 3.1.1 (Schmidt decomposition) Let |ϕ⟩ ∈ H1⊗H2, then there exists a set of

{|ei⟩} ⊂ H1, {|fi⟩} ⊂ H2 and λi ≥ 0 ∀i, such that

|ϕ⟩ =
∑
i

√
λi |ei⟩ ⊗ |fi⟩ (3.1.9)

Proof. We find in general

|φ⟩ =
∑
k,l

βkl |ψk⟩ ⊗ |φl⟩ (3.1.10)

for orthonormal basis {|ψk⟩} ⊂ H1, {|φl⟩} ⊂ H2. Through the singular value decomposition, we

can decomposte the matrix

M = (βkl)kl = U

[
Σ

0

]
V (3.1.11)

with Σ an m×m matrix and 0 a (n−m)×m matrix and Σ ≥ 0 and hence

βkl =
∑
i

UkisiVil (3.1.12)

which gives immediately

|ϕ⟩ =
∑
i

si

(∑
k

Uki |φk⟩
)

︸ ︷︷ ︸
|ei⟩

⊗
(∑

l

Vil |φl⟩
)

︸ ︷︷ ︸
|fi⟩

(3.1.13)

Definition. 3.1.2 (Schmidt coefficients...)

...

Definition. 3.1.3 (Partial trace)

The partial trace is a linear map

TrB : S(HAB)→ S(HA), ρAB 7→ ρA (3.1.14)

defined by

Tr[ρAB(MA ⊗ 1B)] = Tr[ρAMA] ∀MA ∈ B(HA). (3.1.15)

In the case that

• ρAB is a density matrix, ρA is called ”reduced density matrix” of ρAB in A.
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• ρAB = ρA ⊗ ρB we call ρAB a product state.

Proposition. 3.1.4 Consider ρAB ∈ S(HAB), ρA := TrB [ρAB ], then

1. Tr[ρA] = Tr[ρAB ]

2. ρAB ≥ 0, then ρA ≥ 0

3. From the first two we immediately get that ρAB density matrix, then ρA is a density matrix.

4.

⟨φi, ρAφi⟩ =
∑
k

⟨φi ⊗ ψk, ρABφi ⊗ ψk⟩ (3.1.16)

5. If ρAB = |ϕ⟩⟨ϕ| with Schmidt decomposition:

|ϕ⟩ =
∑
i

√
λi |ei⟩ ⊗ |fi⟩ (3.1.17)

then

ρA =
∑
i

λi|ei⟩⟨ei| (3.1.18)

6. If ρAB = ρ̃A ⊗ ρ̃B with Tr[ρ̃B ] = 1, then ρ̃A = ρA

Proof. 1. Tr[ρA] = Tr[ρA 1] = Tr[ρAB(1⊗1)] = Tr[ρAB ]

2. ⟨ψ, ρAψ⟩ = Tr[ρA|ψ⟩⟨ψ|] = Tr[ρAB(|ψ⟩⟨ψ|A ⊗ 1B)] ≥ 0

3. The result is immediate.

4.
⟨φi, ρAφi⟩ = Tr[ρA|φi⟩⟨φi|] = Tr[ρAB(|φi⟩⟨φi|]

=
∑
k,l

⟨φl ⊗ ψk, ρAB(|φi⟩⟨φi| ⊗ 1)φl ⊗ ψk⟩

=
∑
k

⟨φi ⊗ ψk, ρABφi ⊗ ψk⟩

(3.1.19)

5. ⟨ei, ρAei⟩ =
∑
k

⟨ei ⊗ fk, ϕ⟩ ⟨ϕ, ei ⊗ fk⟩ = δij
√
λi
√
λj

6. For all XA ∈ B(HA)

Tr[ρAXA] = Tr[ρAB(XA ⊗ 1B)] = Tr[ρ̃A ⊗ ρ̃B(XA ⊗ 1)]

= Tr[ρ̃AXA] Tr[ρ̃B ] = Tr[ρ̃AXA]
(3.1.20)

3.1.4 Measurement on Subsystem

Let HAB = HA⊗HB . If

MA : B(HA)→ B(HAB) POVM {MA} 7→ POVM {MA ⊗ 1B} (3.1.21)

Theorem. 3.1.5 (Naimark) For every POVM (Mx)
m
x=1 ⊆ B(H), there is a |ψ⟩ ∈ Cm and a

probability measure (Px)
m
x=1 ⊆ B(H⊗Cm) such that

Tr[(ρ⊗ |ψ⟩⟨ψ|Px] ∀x = 1, . . . ,m (3.1.22)
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Proof. Let V : H → H⊗Cm, V =
m∑

x=1

√
Mx ⊗ |x⟩ for an ONB {|x⟩} in Cm. Then

V ∗V =

m∑
x=1

Mx = 1 (3.1.23)

hence V is an isometry and

V = U(1⊗ |ψ⟩) (3.1.24)

for some U ∈ B(H⊗Cm) and |ψ⟩ ∈ Cm. Then,

Tr[ρMx] = Tr[V ρV ∗(1⊗⟨x⟩x)] = Tr[(ρ⊗ |ψ⟩⟨ψ|)U∗(1⊗|x⟩⟨x|)U︸ ︷︷ ︸
PX

] (3.1.25)

3.2 Quantum channels

They are used to describe the evolution or process in quantum systems (QIT). Schematically we

can represent them by

Example. • Closed system evolution:

ρ 7→ UρU∗ (3.2.1)

with U a unitary.

• Open system evolution

ρ 7→ TrE [U(ρ⊗ ρE)U∗] (3.2.2)

Definition. 3.2.1 (Quantum channel)

A quantum channel is a linear map T : S(Hin)→ S(Hout) such that

1. Trace preserving, i.e. Tr[T (ρ)] = Tr[ρ] ∀ρ ∈ S(Hin)

2. Positive: ρ ≥ 0, then T (ρ) ≥ 0.

3. Completely positive: For all n ∈ N0 T ⊗ 1n is positive, with 1n the identity map on B(Cn)

i.e. a completely positive trace preserving (CPTP) map.

Example. • Unitary evolution ρ 7→ UρU∗.

• Adding an ancilla ρ 7→ ρ⊗ ρE .

• Partial trace.

Definition. 3.2.2 (Maximally entangled state)

The maximally entangled state is given by

|ϕ⟩ = 1√
d

d∑
k=1

|kk⟩ (3.2.3)

Definition. 3.2.3 (Choi-Jamiolkowski matrix)

Let T : B(Cd)→ B(Cd) linear, then the Choi-Jamiolkowski matrix of T is given by

C := (T ⊗ 1d)(|ϕ⟩⟨ϕ|) (3.2.4)
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Remark. C determines T by

⟨ij, Ckl⟩ = 1

d

d∑
m,n=1

⟨i, T (|n⟩⟨m|)k⟩ ⟨j, n⟩ ⟨m, k⟩ = 1

d
⟨i, T (|j⟩⟨l|)k⟩ (3.2.5)

Theorem. 3.2.4 (Characterisation of quantum channels) Let T : B(Cd)→ B(Cd′
) linear.

Then the following are equivalent.

1. T is a quantum channel.

2. C ≥ 0 and Tr1[C] =
1
d , with C the Choi-Jambilowski matrix of T :

C := (T ⊗ 1d)(|ϕ⟩⟨ϕ|) (3.2.6)

and

|ϕ⟩ = 1√
d

d∑
k=1

|kk⟩ (3.2.7)

the maximally entangled state.

3. Kraus decomposition:

T (ρ) =

dd′∑
k=1

AkρA
∗
k (3.2.8)

with
dd′∑
k=1

A∗
kAk = 1 (3.2.9)

4. Stinespring dilation:

T (ρ) = Tr2[U(ρ⊗ |ψ⟩⟨ψ|)U∗] (3.2.10)

with U a unitary on Cd⊗Cdd′
and |ψ⟩ a state.

Proof. 1. ⇒ 2. C ≥ 0 follows from T being completely positive

Tr1[C] =
1

d

d∑
n,m=1

Tr[T (|n⟩⟨m|)]|n⟩⟨m|

=
1

d

d∑
n,m=1

Tr[|n⟩⟨m|]︸ ︷︷ ︸
δnm

|n⟩⟨m|

=
1

d

∑
n,m

δnm|n⟩⟨m|

=
1

d

d∑
n=1

|n⟩⟨n|

= 1

(3.2.11)

2. ⇒ 3. We use

• (A⊗ 1) |ϕ⟩ = (1⊗AT ) |ϕ⟩ ∀A ∈ B(Cd)

• ∀ |ψ⟩ ∈ Cd⊗Cd, ∃A s.t. |ψ⟩ = (A⊗ 1) |ϕ⟩
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Then since C ≥ 0,

C =

dd′∑
k=1

|ψk⟩⟨ψk|

=

dd′∑
k=1

(Ak ⊗ 1)︸ ︷︷ ︸
1⊗AT

|ϕ⟩⟨ϕ| (A∗
k ⊗ 1)︸ ︷︷ ︸
1⊗A

= (T ⊗ 1)(|ϕ⟩⟨ϕ|)

(3.2.12)

and

1

d
= Tr1[C] =

d∑
n=1

⟨n,Cn⟩

=
1

d

d∑
n=1

d′∑
k=1

AT
k |n⟩⟨n|Ak

=
1

d

d′∑
k=1

AT
kAk

=
1

d

d′∑
k=1

Ã∗
kÃk

(3.2.13)

To conclude, we just take Ãk := Ak. This concludes this step.

3. ⇒ 4. Define V =
∑
k=1

Ak ⊗ |k⟩, it is an isometry (V ∗V = 1). {|k⟩} is an ONB of Cdd′
.

TrE [V ρV
∗] =

∑
kl

AkρA
∗
l Tr[|k⟩⟨l|]︸ ︷︷ ︸

δkl

=
∑
k

AkρA
∗
k

= T (ρ)

(3.2.14)

Hence, T (ρ) = TrE [V ρV
∗]. We choose V = U(1⊗ |ψ⟩) for some |ψ⟩ pure state and some

unitary U .

4. ⇒ 1. Now it remains to show

T (ρ) = TrE [U(ρ⊗ |ψ⟩⟨ψ|)U∗] (3.2.15)

implies T being a quantum channel. We set

ρ 7→ ρ⊗ |ψ⟩⟨ψ| 7→ U(ρ⊗ |ψ⟩⟨ψ|)U∗ 7→ TrE [U(ρ⊗ |ψ⟩⟨ψ|)U∗] (3.2.16)

The above mappings are all quantum channels and, hence, their composition is a quantum

channel as well.

Remark. • The number k in the Kraus decomposition is called Kraus rank of T (it coincides

with the Choi rank). It is not to be confused with the rank of T as a map.

• T is a completely positive linear map. Hence, there is always a representation for T with

r = rank(τ) orthogonal Kraus operators (HS product).

τ := (T ⊗ 1d)(|ϕ⟩⟨ϕ|) (3.2.17)

the Choi-Jamilowski state.
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• Two sets of Kraus operators {Kj}nj and {K̃l}ml represent the same map T , if and only if ∃
a unitary map s.t.

Kj =
∑
l

UklK̃l (3.2.18)

(the smallest set is complemented with zeros).

Proposition. 3.2.5 (Equivalence of ensembles) Two ensembles of vectors {|ψj⟩} and {|ψl⟩}
(not necessarily normalised) satisfy ∑

j

|ψj⟩⟨ψj | =
∑
l

|φl⟩⟨φl| (3.2.19)

if and only if ∃U a unitary such that |ψj⟩ =
∑
l

Ujl |φl⟩

Proof. ⇐ Trivial.

⇒ Without loss of generality we assume that
∑
j

|ψj⟩⟨ψj | represents a density matrix ρ. Through

purification, one obtains

ρ = TrB [|Ψ⟩⟨Ψ|] (3.2.20)

for |Ψ⟩ =
∑
j

|ψj⟩⊗ |j⟩ and |Φ⟩ =
∑
l

|φl⟩⊗ |l⟩. |Ψ⟩ and |Φ⟩ (from the Schmidt decomposition)

differ only in a unitary (an isometry):

|Ψ⟩ = (1⊗U) |Φ⟩ . (3.2.21)

Take ⟨j|:
|ψj⟩ =

∑
l

Ujl |φl⟩ (3.2.22)

3.2.1 Examples of quantum channels

3.2.1.1 Depolarizing channel

In three dimensions we can get 3 kinds of errors, if we restrict to the two dimensional case. Those

are

1. Bit flip error, which can be modeled by the X Pauli matrix
|0⟩ 7→ |1⟩
|1⟩ 7→ |0⟩

.

2. Phase flip error, modeled by Z
|0⟩ 7→ |0⟩
|1⟩ 7→ − |1⟩

.

3. Combination of both: Y

As a unitary representation (from HA → HAE with the environment E of dimension four) we get

UA→AE : |ψ⟩A 7→
√

1− p |ψ⟩A ⊗ |0⟩E +

√
p

3
(X |ψ⟩A ⊗ |1⟩E + Y |ψ⟩A ⊗ |2⟩E + Z |ψ⟩A ⊗ |3⟩E)

(3.2.23)

Or in the operator representation

Ma := E ⟨a|UA→AE (3.2.24)

with E ⟨a| ∈ {E ⟨0| ,E ⟨1| ,E ⟨2| ,E ⟨3|} and

M0 =
√
1− p1, M1 =

√
p

3
X, M2 =

√
p

3
Y, M3 =

√
p

3
Z (3.2.25)
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It is straight forward to see that∑
M∗

aMa = ((1− p) + p

3
+
p

3
+
p

3
)1 = 1 . (3.2.26)

The depolarisation channel is given by

ρ 7→ ρ′ = (1− p)ρ+ p

3
(XρX + Y ρY + ZρY ) (3.2.27)

In general for an arbitrary dimension D ∈ N, the decoding channel becomes

ρ 7→ (1− p)ρ+ pσ (3.2.28)

with σ usually taken to be 1
d .

3.2.1.2 Phase damping channel

The phase damping channel in operator representation is given by

ρ ∈ C2×2 ρ =

(
ρ00 ρ01

ρ10 ρ11

)
7→ (3.2.29)

In state representation we get for the ONB of the environment {|0⟩E , |1⟩E , |2⟩E}

|0⟩A 7→
√
1− p |0⟩A ⊗ |0⟩E +

√
p |0⟩A ⊗ |1⟩E

|1⟩A 7→
√
1− p |1⟩A ⊗ |0⟩E +

√
p |1⟩A ⊗ |2⟩E

. (3.2.30)

In Kraus operators, we evaluate

A0 =
√

1− p1 =

(√
1− p 0

0
√
1− p

)
, A1 =

√
p|0⟩⟨0| =

(√
p 0

0 0

)

A2 =
√
p|1⟩⟨1| =

(
0 0

0
√
p

) (3.2.31)

With

T (ρ) =

2∑
k=0

AkρA
∗
k = () (3.2.32)

T (ρ) =

(
1− 1

2
p)

)
ρ+

1

2
pZρZ (3.2.33)

3.2.2 Entanglement breaking channels

Definition. 3.2.6 (Separability)

Let ρ ∈ B(HA⊗HB) is separable, if and only if it is a convex combination of products of the form

ρ =
∑
i

λiρ
A
i ⊗ ρBi (3.2.34)

otherwise it is entangled.

Definition. 3.2.7 (Breaking of entanglement)

A quantum channel T is entanglement breaking if its Choi matrix is separable. This is equivalent

to the existence of a POVM {Mx} and a set of density matrices {ρx} such that

T (ρ) =
∑
x

Tr[Mxρ]ρx (3.2.35)
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ρ Instrument ρx := Tx(ρ)
px

(Quantum) state that we

get after measuring x.

x

With probability

px = Tr[Tx(p)]

(classical)

Outcome

fig. 3.3: Scheme of an instrument.

3.2.3 Instruments

Definition. 3.2.8 (Instrument)

An instrument is a set of CPTP maps (quantum channels) {Tx} whose sum is
∑
x
Tx is trace

preserving. x can be interpreted as the outcome of a measurement with probability

px = Tr[Tx(ρ)], ρ 7→ Tx(ρ)

px
. (3.2.36)

In that sense it encompasses the notion of quantum channel and POVMs in the following way

Quantum channel: Ignore the measurement outcome

ρ 7→
∑
x
pxρx =

∑
x
Tx(ρ) =: T

POVM: Ignore the quantum system

px = Tr[Tx(ρ)] = Tr[Tx(ρ)1] = Tr[ρT ∗
x (1)] =: Tr[ρMx]

{Mx}x is a POVM

(3.2.37)

Remark. Instruments can be viewed as special case of quantum channels by assigning to them

ρ 7→
∑
x∈X

Tx(ρ)⊗ |x⟩⟨x| (3.2.38)

with {|x⟩} an orthonormal basis.

Theorem. 3.2.9 (No information without disturbance) Consider an instrument {Tx}x∈X

such that ∀ρ
ρ 7→

∑
x

pxρx = ρ (3.2.39)

Then, ρx is independent of ρ, i.e.

Tr[Tx(ρ)] = Tr[Tx(ρ
′)] (3.2.40)

for all ρ, ρ′ density operators.

Proof. Based on the Choi-Jamiolkowski representation for channels. Since for all density operators

ρ

ρ =
∑
x

pxρx =
∑
x

Tx(ρ). (3.2.41)

This means that
∑
x
Tx = 1. This further gives us that also the Choi Jamiolkowski matrices

coincide.
Tx 7→ τx := (Tx ⊗ 1)(|ϕ⟩⟨ϕ|)∑

x

Tx 7→
∑
x

τx = (1⊗1)(|ϕ⟩⟨ϕ|) = |ϕ⟩⟨ϕ| (3.2.42)
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Moreover, since τx ≥ 0 ∀x, we find that there exists qx ≥ 0 such that

τx = qx|ϕ⟩⟨ϕ|, (3.2.43)

with
∑
x
qx = 1

3.3 Open system representation

3.3.0.1 Partial order of CP maps

We write T2 ≥ T1, if and only if T2 − T1 is completely positive. By Choi-Jamiolkowski representa-

tion, this is equivalent to τ2 ≥ τ1, i.e. τ2 − τ1 positive semi-definite.

Theorem. 3.3.1 (Relation CP maps) Let for i = 1, 2

Ti : Cd′×d′
→ Cd×d (3.3.1)

CP linear maps be given. Assume that T2 ≥ T1. If for i = 1, 2

Vi : Cd → Cd′
⊗Cri (3.3.2)

provide Stinespring dilations for Ti, then there is a contraction [Ti(A) = V ∗
i (A⊗ 1ri)Vi],

C : Cr2 → Cr1 such that V1 = (1d′ ⊗C)V2. (3.3.3)

If V2 belongs to a minimal dilation then C is unique.

Proof. We use the equivalence T2 ≥ T1 ⇔ τ2 ≥ τ1. Starting with defining

Wi := (1ri ⊗⟨ϕ|)(Vi ⊗ 1d′) ∈ B(Cd⊗Cd′
⊗Cri), (3.3.4)

we find that ∀ |ψ⟩ ∈ Cd⊗Cd′

∥W2 |ψ⟩∥2 = ⟨ψ, τ2ψ⟩ ≥ ⟨φ, τ1φ⟩ = ∥W1 |φ⟩∥2 . (3.3.5)

This gives us the existence of C : Cr2 → Cr1 a contraction (C∗C ≤ 1) such that

W1 = CW2. (3.3.6)

Since Vi → Wi is one to one, V1 = (1d′ ⊗C)V2. If r2 = rank(τ2), then W2 is surjective and hence

C is uniquely determined.

Theorem. 3.3.2 (Radon-Nikodym) Let {Ti} a set of CPTP maps such that
∑
i

Ti = T ∈

B(Cd′×d′
,Cd×d) with Stinespring representation

T (A) = V ∗(A⊗ 1r)V. (3.3.7)

Then there exists a set of non negative operators Pi ∈ Cr×r,
∑
i

Pi = 1r, such that

Ti(A) = V ∗(A⊗ Pi)V. (3.3.8)

Remark. Since T =
∑
i

Ti we find that

T (A) =
∑
i

V ∗(A⊗ Pi)V (3.3.9)

with {Pi} a POVM. To say it with words: We have found a possibility to represent a quantum

channel using a POVM.
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Proposition. 3.3.3 (Quantum steering) Let ρ ∈ B(HA) density operator with purification

|ψ⟩ ∈ HA⊗HB (3.3.10)

(i.e. TrB [|ψ⟩⟨ψ|] = ρ). Then for every convex combination ρ =
∑
i

λiρi, then there is an instrument

{Ti}i
Ti : B(HB)→ B(HB) (3.3.11)

such that

λiρi = TrB [(1⊗Ti)(|ψ⟩⟨φ|] (3.3.12)

Proof. (sketch). The idea of the proof is just to form Schmidt decompositions of |ψ⟩ and applying

the transposition map.

3.3.0.2 Open system representation

Theorem. 3.3.4 • Let T : Cd×d → Cd′×d′
be a CPTP amp. Then there exists U ∈ Cdd′×dd′

and a normalised vector |φ⟩ ∈ Cd′
⊗Cd such that ∀ρ

T (ρ) = TrE [U(ρ⊗ |φ⟩⟨φ|)U∗], (3.3.13)

with TrE the partial trace over the first two tensor factors of Cd⊗Cd′
⊗Cd′

.

• Equivalently, there exists an isometry

V : Cd → Cd′
⊗Cr (3.3.14)

with r ≥ rank(τ), ∀A ∈ Cd′×d′
,

T ∗(A) = V ∗(A⊗ 1r)V (3.3.15)

• If T =
∑
i

Ti can be decomposed into CPTP maps, there exists a POVM {Pi} such that

Ti(ρ) = TrE [(Pi ⊗ 1d′)U(ρ⊗ |ϕ⟩⟨ϕ|)U∗] (3.3.16)

If ki is the Kraus rank associated to Ti then ki ≤ rank(Pi) for all i.

Proof. We only give a sketch of a proof for the second statement as the other ones are straight

forward with the considerations above. Hence, let τ the Choi matrix of T, consider its purification:

|ψ⟩ := (1d⊗U)(|Ω⟩ ⊗ |φ⟩) (3.3.17)

τ = TrE [|ψ⟩⟨φ|]. The decomposition of T =
∑
i

Ti gives us τ =
∑
i

τi. We conclude by applying

Quantum Steering to

... (3.3.18)

Remark. V is an isometry (V ∗V = 1d) if and only if T is trace preserving.
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3.4 Quantum hypothesis testing

Lets assume the following setting: We are given as set ρ1, . . . , ρn ∈ S(H) of density operators with

corresponding probabilities p1, . . . , pn that satisfy px ≥ 0 ∀x = 1, . . . , n and
n∑

x=1
px = 1. This can

be interpreted as a set of n hypothesis with corresponding a priori probability px. The goal is to

discriminate among the hypothesis with a measurement described by a POVM M = (Mx)
n
x=1 ⊂

B(H). Hence, we want to maximize

P(M) :=

n∑
x=1

Tr[Mx pxρx︸︷︷︸
=:σx

] (3.4.1)

over POVMs M = (Mx)
n
x=1 ∈M. We set

P(M) := sup
M∈M

P (M). (3.4.2)

Definition. 3.4.1 (Maximum likelihood measurement)

The maximum likelihood measurement is defined as

L :=
∑
x

Mxσx =
∑
x

Mxpxρx (3.4.3)

With this definition, we can write ∀M

P(M) = Tr[L]. (3.4.4)

Lemma. 3.4.2 (Existence of optimal measurement) The supremum in P is always attained,

i.e. there exists a measurement M̂ such that

P(M) = P(M̂) (3.4.5)

Proof. We define

M := span{(M1, . . . ,Mn) ∼=M : M = (Mx)
n
x=1 measures} (3.4.6)

with M ⊆ B(H)n. I.e. M is the space of n-outcome POVMs on the Hilbert space H equipped

with ...

Theorem. 3.4.3 Let (px)
n
x=1 and (px)

n
x=1 as above. Then, for every M = (Mx)

n
x=1, L =

n∑
x=1

Mxpxρx the following are equivalent

1. M is an optimal measurement, i.e

max
M ′=(M ′

x)
n
x=1

P(M ′) = P(M) (3.4.7)

2. ∀x = 1, . . . , n, 1
2 (L+ L∗) ≥ pxρx

3. ∀x = 1, . . . , n, L ≥ pxρx

4. ∃K ∈ B(H) such that ∀x = 1, . . . , n, K ≥ pxρx and (K − pxρx)Mx = 0

5. P(M) = min{Tr[A] : A ∈ A}, A := {A ∈ S(H) : ∀x = 1, . . . , n, A ≥ pxρx}

Example. 1. Commuting states ρ1, . . . , ρn commuting states (mutually commute). This

means that there exists an orthonormal basis {|i⟩}ni=1 such that

max
M

P (M) =
∑
i

max
x
⟨i, ρxi⟩︸ ︷︷ ︸

λxi

(3.4.8)
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2. Uniformly distributed pure states We assume that ρ1, . . . , ρn are pure states and that

the associated a priory probability is 1
n . We further assume that

n∑
x=1

pxρx =
1

d
(3.4.9)

(i.e. in particular d ≤ n). Lets consider Mx = d
nρx which clearly constitute M = (Mx)

n
x=1 a

POVM which has an optimal measurement.

• ρ2x = ρx, L =
n∑

x=1
Mxpxρx. We find for all

L =

n∑
x=1

Mxpxρx =
d

n

n∑
x=1

1

n︸︷︷︸
px

ρ2x

=
d

n2

n∑
x=1

ρx =
d

n

n∑
x=1

pxρx︸ ︷︷ ︸
1 /d

=
1

n

≥ 1

n
ρx = pxρx ∀x = 1, . . . , n

(3.4.10)

i.e. P(M) = Tr[L] = d
n .

3.4.1 Binary hypothesis testing

Let ρ1, ρ2 be density matrices with a priory probability p and (1 − p). Further M = (M1,M2) ∼=
(1,1−P ) a POVM (i.e. M1 +M2 = 1) with P an orthogonal projection. Assigning P to ρ1 and

(1−P )→ ρ2 the error becomes

E(M) := pTr[ρ1(1−P )] + (1− p) Tr[ρ2P ] (3.4.11)

Remark. It is rather obvious that for

P(M) = pTr[ρ1P ] + (1− p) Tr[ρ2(1−P )] (3.4.12)

we find

P(M) + E(M) = 1 (3.4.13)

Theorem. 3.4.4 (Quantum Neyman-Pearson) We find that in the above setting we have the

inequality

E(M) ≥ 1

2
(1− ∥pρ1 − (1− p)ρ2∥1) (3.4.14)

with equality, if and only if P is a projection onto (p1ρ1 − (1− p)ρ2)+.

Proof. For every Hermitian A, we can write A = A+ +A− and find

• Tr[A+] =
∥A∥1+Tr[A]

2 , since ∥A∥1 = Tr[|A|] = Tr[A+ −A−] and Tr[A] = Tr[A+ +A−]

This consideration allows us to write

min
M
E(M) = min

M
{pTr[ρ1(1−P )] + (1− p) Tr[ρ2P ]}

= min {p− Tr[P (pρ1 − (1− p)ρ2)]}

= p−max
M
{Tr[P (pρ1 − (1− p)ρ2)︸ ︷︷ ︸

A=A++A−

]

(3.4.15)
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Hence the maximum is attained if PA+ = A+ and PA− = 0, i.e. P is an orthonormal projection

onto A+ = (pρ1 + (1− p)ρ2)+. This gives

= p− {Tr[(pρ1 − (1− p)ρ2)+]}

= p−
∥pρ1 − (1− p)ρ2∥1 +Tr[pρ1]− Tr[(1− p)ρ2]

2

=
1

2
(1− ∥pρ1 − (1− p)ρ2∥1)

(3.4.16)

which concludes the proof. Alternatively we could just argue that for P(M), we can prove that

P = (pρ1 − (1− p)ρ2)+ provides an optimal measurement as

L = Ppρ1 + (1−P )(1− p)ρ2 ≥

pρ1(1− p)ρ2
. (3.4.17)

We are now interested in sending m ∈ N copies of ρ1 and ρ2 respectively, i.e. ρ⊗m
1 and ρ⊗m

2 . It

turns out that for the optimal measurement we find the error rate

Eoptm =
1

2
(1−

∥∥pρ⊗m
1 − (1− p)ρ⊗m

2

∥∥
1
) (3.4.18)

and Eoptm decays exponentially with −ξm, with ξ a rate given as

Eoptm ≤ Ke−ξm (3.4.19)

Theorem. 3.4.5 If p ̸= 0, 1, it holds that

ξ := lim
m→∞

(
− 1

m
log(Eoptm )

)
= − log( inf

s∈[0,1]
Tr[ρ1−s

1 ρs2]) (3.4.20)

Proof. For A,B ∈ B(H) positive, ∀s ∈ [0, 1]

Tr[(As −Bs)A1−s]︸ ︷︷ ︸
Tr[A]−Tr[BsA1−s]

≤ Tr[(A−B)+] (3.4.21)

which is a consequence of z 7→ zs being operator monotone. Then

1

2
(Tr[A+B]− ∥A−B∥1) =

1

2
(2Tr[A]− Tr[A−B]− Tr[(A−B)+] + Tr[(A−B)−])

= Tr[A]− Tr[(A−B)+] ≤ Tr[BsA1−s]
(3.4.22)

If we choose A = pρ⊗m
1 and B = (1− p)ρ⊗m

2 , then

1

2
(1−

∥∥pρ⊗m
1 − (1− p)ρ⊗m

2

∥∥
1
) ≤ p1−s(1− p)s Tr[(ρ⊗m

1

1−s
ρ⊗m
2

s

= p1−s(1− p)s Tr[(ρ1−s
1 ρs2)

⊗m] = p1−s(1− p)s Tr[ρ1−s
1 ρs2]

m

(3.4.23)

This gives us that

Eoptm ≤ inf
s∈[0,1]

p1−s(1− p)1−s Tr[ρ1−s
1 ρs2]

m ≤ inf
s∈[0,1]

Tr[ρ1−s
1 ρs2]

m (3.4.24)

and hence for all m

− 1

m
log Eoptm ≥ − log inf

s∈[0,1]
Tr[ρ1−s

1 ρs2] (3.4.25)
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which in the limit gives us

lim
m→∞

− 1

m
log Eoptm ≥ − log( inf

s∈[0,1]
Tr[ρ1−s

1 ρs2]). (3.4.26)

Equality is achieved when ρ1, ρ2 are given by ρ̂1, ρ̂2 such that [ρ̂1, ρ̂2] = 0. This allows us to write

for x = 1, 2

ρx =
∑
i

λxi |ψx
i ⟩⟨ψx

i | (3.4.27)

and hence
ρ̂1 =

∑
i,j

λ1i |⟨ψ1
i , ψ

2
j ⟩||ij⟩⟨ij|

ρ̂2 =
∑
i,j

λ2i |⟨ψ1
i , ψ

2
j ⟩||ij⟩⟨ij|

(3.4.28)

with {|ij⟩} a ONB of H⊗H.

3.4.2 The pretty good measurement

Pretty good measurement Square measurement

R =
n∑

i=1

pxρx and then S =
n∑

x=1
p2xρ

2
x and then

Mp
x = R−1/2pxρx + 1

n (1−R−1/2RR−1/2)︸ ︷︷ ︸
1ker(R)

Ms
x := S−1/2p2xρ

2
xS

−1/2 + 1
n (1−S

−1/2SS−1/2)

MP = (Mp
x )

n
x=1 MS = (Ms

x)
n
x=1

with R−1 and S−1 the Moore-Penrose pseudo inverse. We need the following relations (which we

won’t proof here) in the following:

Definition. 3.4.6 (Schatten p-norms)

Let H be a finite dimensional Hilbert space. Then for p ∈ [1,∞)

∥·∥p : B(H)→ [0,∞), A 7→ ∥A∥p = Tr[|A|p]1/p (3.4.29)

is a norm on B(H).

Theorem. 3.4.7 (Hoelder’s inequality) For p, q ∈ [1,∞] and 1
p + 1

q = 1 we find that

∥AB∥1 = Tr[|AB|] ≤ ∥A∥p ∥B∥q (3.4.30)

Theorem. 3.4.8 (Jensen’s inequality) Let f be a continuous function on an interval I. Then

the following are equivalent

1. f is operator convex in I.

2. For each n ∈ N

f
( n∑

i=1

A∗
iXiAi

)
≤

n∑
i=1

A∗
i f(Xi)Ai (3.4.31)

with (X1, . . . , Xn) a n-tuple of bounded self-adjoint operators with spectra contained in I and

A1, . . . , An operators on H with
n∑

i=1

A∗
iAi = 1.

3. f(V ∗XV ) ≤ V ∗f(X)V , with X Hermitian with spectrum in I and V an isometry.

Now we will come to the results we obtain from this very basic relations.
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Proposition. 3.4.9 We find that in the setting above, we find

(Tr[S1/2])2 ≤ P(MS) ≤ Popt ≤ Tr[S1/2] (3.4.32)

Proof. 1.

(Tr[S1/2])2 = (Tr[SS−1/2])2 =
(∑

x

Tr[p2xρ
2
x︸︷︷︸

σ2
x

S−1/2]
)2

=
(∑

x

Tr[σx(σ
1/2
x S−1/2σ1/2

x )]
)2

Jensen
≤

∑
x

Tr[σx(σ
1/2
x S−1/2σ1/2

x )2]

=
∑
x

Tr[σ2
xS

−1/2σxS
−1/2]

=
∑
x

Tr[σx S
−1/2σ2

xS
−1/2︸ ︷︷ ︸

Ms
x

] = P(MS)

(3.4.33)

2. Using that z 7→ z1/2 is operator monotone we find that

σ2
x ≤

∑
x

σ2
x = S (3.4.34)

giving us that

σx ≤ S1/2 ∀x = 1, . . . , n (3.4.35)

As a consequence we obtain∑
x

Tr[Mxσx] ≤
∑
x

Tr[MxS
1/2] = Tr[(

∑
x

Mx︸ ︷︷ ︸
=1

S1/2] = Tr[S1/2] (3.4.36)

Proposition. 3.4.10 We find that

(Popt)2 ≤ P(Mp) ≤ Popt (3.4.37)

Proof. Let M = (Mx)
n
x=1 be a POVM. We then findt that(∑

x

Tr[Mxσx]
)2

=
(∑

x

Tr[(R1/4MxR
1/4)(R−1/4σxR

−1/4)]
)2

Hoelder
≤

(∑
x

∥∥∥R1/4MxR
1/4
∥∥∥
2

∥∥∥R−1/4σxR
−1/4

∥∥∥
2

)2
≤
∑
x

∥∥∥R1/4MxR
1/4
∥∥∥2
2︸ ︷︷ ︸

(1)

∑
x

∥∥∥R−1/4σxR
−1/4

∥∥∥2
2︸ ︷︷ ︸

(2)

≤ P(MP )

(3.4.38)

We find that

(1) =
∑
x

∥∥∥R1/4MxR
1/4
∥∥∥2
2
=
∑
x

Tr[(R1/4MxR
1/4)2] =

∑
x

Tr[R1/2MxR
1/2Mx]

≤
∑
x

Tr[R1/2MxR
1/2] = Tr[R] = 1

(2) =
∑
x

∥∥∥R−1/4σxR
−1/4

∥∥∥2
2
=
∑
x

Tr[R−1/2σxR
−1/2︸ ︷︷ ︸

Mp
x

σx] = P(Mp)

(3.4.39)
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In summary with the relation E(M) = 1− P(M), Eopt = 1− Popt we find

(Popt)2 ≤

{
P(MP )

P(MS)

}
≤ Popt, (Eopt) ≤

{
E(MP )

P(MS)

}
≤ 2 Eopt (3.4.40)

3.5 Separability criteria

Definition. 3.5.1 (Separable states)

Let ρ be a density matrix in HAB = HA⊗HB , then ρ is separable if it can be written as

ρ =
∑
j

pjρ
A
j ⊗ ρBj , (3.5.1)

with 0 ≤ pj ≤ 1,
∑
j

pj = 1 and ρAj and ρBj states on their respective Hilbert space. If ρ is not

separable, then we call ρ entangled.

Remark. A standard way to measure correlations:

Corρ(A : B) := sup
∥OA∥1

≤1

∥OB∥≤1

|Tr[ρOAOB ]− Tr[ρOA] Tr[ρOB ]| (3.5.2)

For a separable state

Cor∑ pjρAj ⊗ρBj
(A : B) (3.5.3)

actually measures classical correlation. In that sense separable states are classically correlated

state.

3.5.0.1 Entanglement entropy

Let |ψ⟩ ∈ HA⊗HB and d = min{dimHA,dimHB}. In Schmidt decomposition we find

|ψ⟩ =
d∑

i=1

√
λi |ei⟩ ⊗ |fi⟩ (3.5.4)

with λi ≥ 0, {|ei⟩} an ONB of HA and {|fi⟩} an ONB of HB respectively. With ρ = |ψ⟩⟨ψ| a pure

state, we define the entanglement entropy of ρ as the von Neumann entropy of {λi}di=1, i.e.

SENT (ρ) := −
∑
i=1

λi log(λi) (3.5.5)

We then find that

• Separable: SENT (ρ) = 0 ⇔ Schmidt rank of |ψ⟩ is 1.

• Maximally entangled: λi =
1
d ∀i = 1, . . . , d.

In the above discussion we have taken ρ to be a pure state, we would, however, like to answer

the question if a matrix is entangled or separable in all generality. It turns out that measuring

separability in a broader framework is rather difficult. We cannot dive into the discussion directly

but first have to develop some tools.

Definition. 3.5.2 (Partial transpose)

The partial transpose is a positive linear map, which is not completely positive. We first introduce

the transposition map

Θ : A 7→ At, ⟨i, AT j⟩ = ⟨j, Ai⟩ ∀i, j. (3.5.6)
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Using this map we define the partial transpose through its action on the maximally entangled state

|Ω⟩ = 1
d

d∑
i=1

|ii⟩,

(Θ⊗ 1)(|Ω⟩⟨Ω|) = 1

d
F F :=

n∑
i,j=1

|ij⟩⟨ji| (3.5.7)

The partial trace can be used to detect entanglement, as follows:

Proposition. 3.5.3 HAB = HA⊗HB. Consider ρ ∈ S(HAB). If ρTA has a negative eigenvalue,

then ρ is entangled.

Proof. ρ separable ⇒ ρ =
∑
j

pjρ
A
j ⊗ ρAj

·TA⇒ ρTA =
∑
j

pj(ρ
A
j )

T ⊗ ρBj ≥ 0

We again need to introduce some nomenclature to proof the next proposition.

Definition. 3.5.4 (Entanglement witness)

We first set

δ := {separable density matrices} (3.5.8)

is convex and compact set. By the Hahn-Banach Theorem ρ /∈ δ, then there exists a hyperplane ω

such that

Tr[ρω] < 0 and Tr[σω] ≥ 0 σ ∈ δ. (3.5.9)

We then call ω a entanglement witness. The Choi-Jamiolkowski matrix of this state is given

through its action on the maximally entangled state

ω = (Λ∗ ⊗ 1)(|Ω⟩⟨Ω|) (3.5.10)

for Λ a quantum channel.

Proposition. 3.5.5 Let HAB = HA⊗HB with ρ ∈ S(HAB) is separable if and only if (Λ ⊗
1B)(ρ) ≥ 0, for every Λ : B(HA)→ B(HA) positive map.

Proof. ⇒ We just use the explicit form of the entangled state. For a separable state and a positive

map Λ : B(HA)→ B(HA), we find

(Λ⊗ 1B)(ρ) = (Λ⊗ 1B)
(∑

j

λjρ
A
j ⊗ ρBj

)
=
∑
j

λj Λ(ρ
A
j )︸ ︷︷ ︸

≥0

⊗ρBj ≥ 0 (3.5.11)

⇐ Given ρ entangled, we want to show that there exists A positive map such that (Λ ⊗ 1B)(ρ)

has a negative eigenvalue. Using Definition 3.5.4, we find

Tr[(A⊗B)ω] = Tr[BTΛ(A)] = Tr[F(Λ(A)⊗BT )] = dTr[(Λ⊗ 1B)(A⊗B)|Ω⟩⟨Ω|]

= d ⟨Ω, (Λ⊗ 1B)(A⊗B)Ω⟩
(3.5.12)

In the second step we used that Tr[XY ] = Tr[FX ⊗ Y ]. Now this means

Tr[ρω] = d ⟨Ω, (Λ⊗ 1B)(ρ)Ω⟩ (3.5.13)

This means, if ρ is entangled, then Tr[ρω] < 0, which gives us ⟨Ω, (Λ⊗ 1B)(ρ)Ω⟩ < 0 and

finally (Λ⊗ 1B)(ρ) has a negative eigenvalue.

Remark. The idea to implement this map in a lab is

ρ
T7→ p

d2
1d⊗1d +(1− p)(Λ⊗ 1)ρ. (3.5.14)

Then T is a completely positive map. If we apply T to a separable state, the minimal eigenvalue

of T (ρ) has to be larger than the threshold. If that is not the case we can conclude that ρ is

entangled.
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3.5.0.2 Partial Transpose

We want to take a closer look at the partial transpose. This map is clearly not unique, as one

obtains a different map by just changing the basis in question. Take for example T̃A which can be

written in terms of a unitary and the ”original” partial transpose

ρT̃A = (U ⊗ 1)[(U∗ ⊗ 1)ρ(U ⊗ 1)]T̃A = [(UUT )⊗ 1]ρTA [(UUT )∗ ⊗ 1] ̸= ρTA . (3.5.15)

This non-uniqueness does, however, not interfere with the criteria that we developed, as those are

only concerned about the eigenvalues and hence are not affected by basis changes (composition

with unitaries).

Definition. 3.5.6 (Decoposable map)

We call Λ : B(H)→ B(H) a decomposable map, if Λ = Λ1+Λ2⊗Θ, with Λ1 and Λ2 positive maps

and Θ a partial transpose.

Remark. The above definition allows us to write the entanglement withness as

ω = Q1 +QT
2 (3.5.16)

with the PSD

Qi = d(Λ∗
i ⊗ 1)(|Ω⟩⟨Ω|). (3.5.17)

In general the separability criteria of the entanglement witness is weaker than of transpositions,

i.e.

ρTA ≥ 0 ⇒ (Λ⊗ 1)(ρ) ≥ 0 (3.5.18)

Example. Let Λred(A) = Tr[A]1−A we get the separability criteria

(Λred ⊗ 1)(ρ) ≥ 0⇔

ρA ⊗ 1B ≥ ρAB

1A⊗ρB ≥ ρAB

. (3.5.19)

We get for the witness

ωred = (1−F)TA = 2PTA
− (3.5.20)

with P− the projector onto the anti-symmetric space. Further the ω prop is

Tr[ρω] < 0 ⇔ ⟨Ω, ρΩ⟩ ≤ 1

d
(3.5.21)

with |Ω⟩ the maximally entangled state. In case that H = C2⊗C2, PTA
− is one dimensional, which

gives us that the entanglement witness criterion is equivalent to the PPT criterion.

Proposition. 3.5.7 Let ρ ∈ S(C2⊗C3) or S(C2⊗C2), then

ρ separable ⇔ ρTA ≥ 0 (3.5.22)

which is a consequence of the complete decomposability of every positive map in 2⊗ 2 and 2⊗ 3.

Proposition. 3.5.8 Entangled states with PPT exists if and only if there are non-decomposable

maps.



Chapter 4

Trace Distances, Fidelity and

Entropy Measures

4.1 Quantum Entropies

4.1.1 Von Neumann Entropy

In the classical information theory, the setting is the one of an ensemble X = {x, PX}. We want

to prepare a message of n letters with the n letters drawn independently from X. In this context

we define the Shannon Entropy as

H(X) := −
∑
x

px log px. (4.1.1)

This quantity gives the value of information, meaning the number of incompressable bits carried

per letter (asymptotically with n→∞).

If we have two ensembles X = {x, PX} and Y = {y,QY }, we can compare them and compute

their correlation

I(X : Y ) = H(X) +H(Y )−H(X,Y ). (4.1.2)

This quantity is called the mutual information and has the following interpretations:

• It computes the information per letter about X that can be acquired by reading Y or vice

versa.

• Or it can be understood as the amount of information sent through a (classical) channel.

4.1.1.1 Quantum Generalisation

We now translate this quantities into the quantum information context. The setting now is the

one of n letters from an ensemble of {ρx} states with a priori probability {px}, i.e.

ρ =
∑
x

pxρx (4.1.3)

Definition. 4.1.1 (Von Neumann Entropy)

Let ρ ∈ S(H) a positive semidefinite matrix H. We define the von Neumann entropy of ρ as:

S(ρ) = −Tr[ρ log ρ] = −Tr[UDU−1 log(UDU−1)] = −Tr[D log(D)] = −
∑
x

λx log(λx) (4.1.4)

81
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with

ρ = UDU−1 with D =


λ1 0 0

0
. . . 0

0 0 λn

 (4.1.5)

Remark.

log ρ = U


log λ1 0 0

0
. . . 0

0 0 log λn

U−1 (4.1.6)

Remark. If all the states are mutually orthogonal pure states, then the quantum source reduces

to the classical one and they are perfectly distinguishable, i.e. S(ρ) = H(X)

The operational interpretation and the meaning of the Von Neumann entropy is versatile.

• The Von Neumann entropy quantifies the quantum information content per letter of ensemble

(the minimum number of qubits per letter that are necessary to reliably encode a message).

• It quantifies the entanglement of a bipartite pure state.

Proposition. 4.1.2 (Properties of the Von Neumann entropy) The following are the

essential properties of the Von Neumann entropy which will be the basis for all that follows.

1. Purity ρ = |ψ⟩⟨ψ| ⇒ S(ρ) = 0

2. Unitary invariance S(UρU−1) = S(ρ)

3. Maximum S(ρ) ≤ log(D) (the logarithm of the dimension of the underlying Hilbert space).

4. Concavity For λi ≥ 0
∑
i

λi = 1, ρ1, . . . , ρn states, we find

S
(∑

i

λiρi

)
≥
∑
i

λiS(ρi). (4.1.7)

5. Entropy of measurement, A =
∑
y
λy|ay⟩⟨ay|. We measure in the eigenbasis of A and

define the ensemble

Y = {ay, p(ay)} p(ay) = ⟨ay, ρay⟩ . (4.1.8)

It is immediately clear that

H(Y ) ≥ S(ρ) (4.1.9)

with equality, if and only if [A, ρ] = 0. More loosely put, S(ρ) increases if we replace all

off-diagonal terms of ρ by 0. The randomness of the measurement outcome is minimized if

we choose to measure an observable that commutes with ρ. This means if we choose a ”bad

observable” our measurement becomes less predictable.

6. Entropy of preperation Let {|φx⟩ , px} be given and ρ =
∑
x
λx|φx⟩⟨φx|. Then

H(X) ≥ S(ρ) (4.1.10)

with equality, if and only if {|φx⟩} are mutually orthogonal.

7. Additivity ρAB ∈ S(HA⊗HB), ρA ∈ S(HA), ρB ∈ S(HB), then

S(ρAB) = S(ρA) + S(ρB) (4.1.11)
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8. Subadditivity It holds in general that

S(ρAB) ≤ S(ρA) + S(ρB) (4.1.12)

This statement is equivalent to the quantum mutual information

Iρ(A : B) = S(ρA) + S(ρB)− S(ρAB) (4.1.13)

being greater or equal to zero.

9. Strong subadditivity We further have that

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC), (4.1.14)

ρABC ∈ S(HA⊗HB ⊗HB).

10. Triangle inequality (Araki-Lieb inequality)

S(ρAB) ≥ |S(ρA)− S(ρB)| (4.1.15)

Exercise. Let ρAB a pure quantum state in a bipartite Hilbert space, i.e. S(ρAB) = 0 and

S(ρA) = S(ρB) but in general S(ρA) = S(ρB) ̸= 0. Show this.

4.1.1.2 Open system evolution

Let ρSE = ρS ⊗ ρE . We then have that S(ρSE) = S(ρS) + S(ρE). If we now look at the evolution

map

ρSE 7→ USEρSEU
−1
SE = ρ′SE (4.1.16)

From Proposition 4.1.2, we find

S(ρS) + S(ρE) = S(ρSE) = S(ρ′SE) ≤ S(ρ′S) + S(ρ′E). (4.1.17)

Put in different terms Equation (4.1.17) is the second law of thermodynamics.

Definition. 4.1.3 (Conditional entropy)

Let ρAB ∈ S(HA⊗HB), then we define the conditional quantum entropy as

H(A|B)ρ := S(ρAB)− S(ρB) (4.1.18)

Remark. We have the following properties

• H(A|B)ρ ≥ − log(dA) but can be negative, which we will later show.

• S(ρA) ≥ H(A|B)ρ

Definition. 4.1.4 (Coherent information)

The coherent information for ρAB ∈ S(HA⊗HB) is given by

I(A⟨B)ρ := S(ρB)− S(ρAB) (4.1.19)

Definition. 4.1.5 (Mutual information)

Let ρAB ∈ S(HA⊗HB), then the mutual information is given by

I(A : B)ρ = S(ρA) + S(ρB)− S(ρAB) = S(ρA ⊗ ρB)− S(ρAB) (4.1.20)

Remark. We have the following properties
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• I(A : B)ρ ≥ 0

• Chain rule: I(A : BC)ρ = I(A : B)ρ + I(A : C|B)ρ. With the last quantity the conditional

mutual information defined in the following.

Definition. 4.1.6 (Conditional mutual information)

The conditional mutual information for ρABC ∈ S(HA⊗HB ⊗HC) is given by

I(A : C|B)ρ = S(ρAB) + S(ρBC)− S(ρB)− S(ρABC) ≥ 0 (4.1.21)

Definition. 4.1.7 (Quantum relative entropy)

Let ρ, σ ∈ S(H), then the quantum relative entropy is given as

D(ρ∥σ) =

Tr[ρ(log ρ− log σ)] kerσ ⊆ ker ρ

+∞ otherwise
. (4.1.22)

Remark. The quantum relative entropy is inspired by the Kullback-Leibler divergence. For

p = {px}, q = {qx} probability distributions

KL(p∥q) =
∑
x

px log
px
qx

(4.1.23)

Definition. 4.1.8 (Belavkin-Staszewski relative entropy)

Let ρ, σ ∈ S(H) full rank, then the Belavkin-Staszewski relative entropy is given by

D̂(ρ∥σ) = Tr[ρ log ρ1/2σρ1/2] (4.1.24)

Remark. We have the relation

D(ρ∥σ) ≤ D̂(ρ∥σ) (4.1.25)

with equality if and only if [ρ, σ] = 0.

Proposition. 4.1.9 (Properties of the quantum relative entropy I) The quantum relative

entropy has the following properties

• Continuity: ρ 7→ D(ρ∥σ)

• Additive: ρA, σA ∈ S(HA), ρB , σB ∈ S(HB), then

D(ρA ⊗ ρB∥σA ⊗ σB) = D(ρA∥σA) +D(ρB∥σB) (4.1.26)

• Superadditivity: ρAB ∈ S(HAB), σA ∈ S(HA), σB ∈ S(HB)

D(ρAB∥σA ⊗ σB) ≥ D(ρA∥σA) +D(ρB∥σB). (4.1.27)

• Data processing inequality: ρ, σ ∈ S(H), T a quantum channel, then

D(ρ∥σ) ≥ D(T (ρ)∥T (σ)) (4.1.28)

Remark. There is an axiomatic characterization of the relative entropy. We find that every

function

f : S(H)× S(H)→ [0,+∞) (4.1.29)

that satisfies the properties in Proposition 4.1.9 is already the relative entropy.

Proposition. 4.1.10 (Properties of the quantum relative entropy II) The relative entropy

further has the properties:

• Non-negativity: D(ρ∥σ) ≥ 0

• Unitary invariance: D(UρU∗∥UσU∗) = D(ρ∥σ)
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4.1.2 Relative entropy

We once again revisit the relative entropy and give again the definition

Definition. 4.1.11 (Relative entropy)

Let ρ, σ ∈ S(H), with H finite-dimensional Hilber space, we define their relative entropy by:

D(ρ∥σ) :=

Tr[ρ(log ρ− log σ)] if kerσ ⊆ ker ρ

+∞ otherwise
(4.1.30)

Proposition. 4.1.12 (Properties of the relative entropy) • Unitary invariance: D(U∗ρU∥U∗σU) =

D(ρ∥σ) ∀U unitaries

• Non-negativity: D(ρ∥σ) ≥ 0 with equality if and only if ρ = σ (direct consequence of DPI

for the Tr[·])

1. Continuity: ρ→ D(ρ∥σ) is continuous.

2. Additivity: ρAB , σAB ∈ S(HA⊗HB), D(ρA ⊗ ρB∥σA ⊗ σB) = D(ρA∥σA) +D(ρB∥σB).

3. Superadditivity: ρAB ∈ S(HA⊗HB), σA ∈ S(HA), σB ∈ S(HB), then

D(ρAB∥σA ⊗ σB) ≥ D(ρA∥σB) +D(ρB∥σB) (4.1.31)

4. Data processing inequality (monotonicity) ρ, σ ∈ S(H), T CPTP map, then

D(ρ∥σ) ≥ D(T (ρ)∥T (σ)) (4.1.32)

Theorem. 4.1.13 (Axiomatic characterisation of the relative entropy) If f : S(H) ×
S(H)→ [0,∞) satisfies 1. - 4. from Proposition 4.1.12, then f is the relative entropy.

Proof. Step 1. 1. - 3. imply ”lower asymptotic semicontinuity” (LAS) Definition 4.1.14. Let

therefore be (ρ, σ) and {ρ′n} sequence of state be given, such that∥∥ρ⊗n − ρ′n
∥∥
1

n→∞−→ (4.1.33)

Through the DPI for ∥·∥1 we can conclude that

∥ρ− (ρ′n)i∥1
n→∞−→ . (4.1.34)

Now applying superadditivity to the first and addtitivity to the second summand gives

1

n
(D(ρ′n∥σ⊗n)−D(ρ⊗∥σ⊗n))

2.+3.
≥ 1

n

n∑
i=1

[
D((ρ′n)i∥σ)−D(ρ∥σ)

]
≥ min

i=1,...,n

[
D((ρ′n)i∥σ)−D(ρ∥σ)

] n→∞−→
1.

0

(4.1.35)

Step 2. 2. + 4. + LAS gives us the relative entropy. To see this let w.l.o.g. ρ0, σ0 ∈ S(H) such

that f(ρ0, σ0) = D(ρ0∥σ0). For any ρ, σ ∈ S(H), there exists l,m, l′,m′ ∈ N such that

l′

m′D(ρ0∥σ0) ≤ D(ρ∥σ) ≤ l

m
D(ρ0∥σ0). (4.1.36)

Now the upper bound is equivalent to saying that

mD(ρ∥σ) ≤ lD(ρ0∥σ0)
2.⇐⇒ D(ρ⊗m∥σ⊗m) ≤ D(ρ⊗l

0 ∥σ
⊗l
0 )

Lemma 4.1.15
=⇒ Ψn(σ⊗ln

0 ) = σ⊗nm, lim
n→∞

∥∥Ψn(ρ⊗ln
0 )− ρ⊗mn

∥∥
1
= 0

(4.1.37)
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Therefore,

mf(ρ, σ)
2.
= f(ρ⊗n, σ⊗n)

2.
= lim sup

n→∞

1

n
f(ρ⊗mn, σ⊗mn)

≤ lim inf
n→∞

1

n
f(Ψn(ρ⊗ln

0 ),Ψn(σ⊗ln
0 )︸ ︷︷ ︸

σ⊗nm

)

4.+DPI
≤ lim inf

n→∞

1

n
f(ρ⊗ln

0 , σ⊗ln
0 )

2.
= f(ρ⊗l

0 , σ⊗l
0 )

2.
= lf(ρ0, σ0)

(4.1.38)

which is equivalent to

f(ρ, σ) ≤ l

m
f(ρ0, σ0) =

l

m
D(ρ0, σ0). (4.1.39)

Analogously one obtains

l′

m′D(ρ0∥σ0) =
l′

m′ f(ρ0, σ0) ≤ f(ρ, σ) ≤
l

m
D(ρ∥σ0). (4.1.40)

Choosing properly l,m, l′,m′, we can conclude that f(ρ, σ) ∝ D(ρ∥σ).

Definition. 4.1.14 (Lower asymptotic semicontinuity (LAS))

For ρ, σ ∈ S(H) a pair of states, H⊗n, {ρ′n} a sequence in S(H⊗n). We say that f is LAS with

respect to σ if

lim
n→∞

∥∥ρ⊗n − ρ′n
∥∥
1
= 0 (4.1.41)

then, this implies that

lim inf
n→∞

1

n
(f(ρ′n, σ

⊗n)− f(ρ⊗n, σ⊗n)) ≥ 0 (4.1.42)

Lemma. 4.1.15 If ρ, σ, ρ0, σ0 ∈ S(H) such that D(ρ∥σ) ≤ D(ρ0∥σ0), then there exists as se-

quence (Ψn) of CPTP maps such that

Ψn(σ
n
0 ) = σ⊗n, lim

n→∞

∥∥Ψn(ρ
⊗n
0 )− ρ⊗n

∥∥
1
= 0 (4.1.43)

4.1.3 Non-commmutative Lp norms

4.1.3.1 Schatten p-norms

Definition. 4.1.16 (Schatten p-norms)

Let X ∈ B(H) and p ∈ [1,+∞), then the Schatten p-Norm of X is given by

∥X∥p := (Tr[|X|p])1/p (4.1.44)

where |X| =
√
X∗X. For p =∞, we defin

∥·∥∞ = lim
p→∞

∥·∥p (4.1.45)

the operator norm. For p < 1, it does not satisfy the triangle inequality.

Proposition. 4.1.17 (Properties of Schatten p-norms) 1. Monotonicity: For 1 ≤ p ≤
p′ ≤ +∞,

∥X∥1 ≤ ∥X∥p ≤ ∥X∥p′ ≤ ∥X∥∞ . (4.1.46)

2. Unitary invariance For U a unitary, we have

∥UXU∗∥p = ∥X∥p . (4.1.47)
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3. Minkowski’s inequality: ∥X + Y ∥p ≤ ∥X∥p + ∥Y ∥p.

4. Hölder’s inequality: 1
p + 1

q = 1, ∥XY ∥1 ≤ ∥X∥p ∥Y ∥q.

5. Duality:

∥X∥q := sup
{
| ⟨X,Y ⟩ | : ∥Y ∥p = 1

}
(4.1.48)

6. Submultiplicativity: ∥XY ∥p ≤ ∥X∥p ∥Y ∥p

7. Generalised Hölder’s inequality: For 1
r = 1

p + 1
q , 0 < r <∞, ∥XY ∥r ≤ ∥X∥p ∥Y ∥q

8. ∥X∥ = ∥X∗∥p, ∥X∥
p
2p = ∥X∗X∥p.

9. ∥·∥1 satisfies DPI: ∥ρ− σ∥1 ≥ ∥T (ρ)− T (σ)∥1 for T CPTP.

Definition. 4.1.18 (Weighted p-norms)

Let p ∈ [1,∞) again, ρ ∈ S+(H) full-rank, then the weighted p-norm is given by:

∥X∥Lp(ρ) := Tr[
∣∣ρ 1

2pXρ
1
2p

∣∣p]1/p (4.1.49)

for all X ∈ B(H). We further define the KMS (Kubo-Martin-Schwinger) inner product

⟨X,Y ⟩ρ,KMS := Tr[ρ1/2Xjρ1/2Y ] (4.1.50)

and the GNS (Gelfant-Naimark-Segal) inner product

⟨X,Y ⟩ρ,GNS := Tr[ρX∗Y ] (4.1.51)

for all X,Y ∈ B(H)

Proposition. 4.1.19 (Properties of the weighted p-norms) 1. Monotonicity: ∀p, q,∈
[1,∞), p ≤ q, ∥X∥Lp(ρ) ≤ ∥X∥Lq(ρ) ∀X ∈ B(H).

2. Duality: ∥X∥Lp(ρ) := sup
{
| ⟨X,Y ⟩ρ,GMS | : ∥Y ∥Lq(ρ) = 1

}
3. Operator norm: ∥X∥∞ = ∥X∥L∞(ρ) := lim

p→∞
∥X∥Lp(ρ)

4.2 Divergences

In 1961 Alfred Renyi, supplemented the Kullback-Leibler divergence, given for probability distri-

butions {px}nx=1, {qx}nx=1 as

KL(p∥q) =
n∑

x=1

px log
px
qx
, (4.2.1)

by starting with an axiomatic description and then arriving at all possible families of divergences

that satisfy those axioms. We will build from the classical axioms to the quantum ones

Definition. 4.2.1 (Classical axiomatic definition of a divergence)

We call a function D : B(H)+ × B(H)+ → [0,+∞) a divergence if for X,Y ∈ B(H)+ i.e. unnor-

malised Hermitian positive semi-definite operators that satisfy the kernel inclusion kerY ⊆ kerX,

the following hold

1. Continuity: X 7→ D(X∥Y ) is continuous (problems with continuity on Y ), Y 7→ D(X∥Y )

is continuous if X,Y > 0.

2. Unitary invariance: D(X∥Y ) = D(UXU∗∥UY U∗) for all unitaries U .
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3. Order: If X ≥ Y , then D(X∥Y ) ≥ 0. If X ≤ Y , then D(X∥Y ) ≤ 0.

4. Additivity: D(X1 ⊗X2∥Y1 ⊗ Y2) = D(X1∥Y1) + D(X2∥y2).

5. General mean: There exists a continuous, strictly monotonic function g, s.t.

Q(·∥·) = g(D(·∥·)) (4.2.2)

and for X1, Y1 ∈ B(H1)+, X2, Y2 ∈ B(H2)+

Q(X1 ⊕X2∥Y1 ⊕ Y2) =
Tr[X1]

Tr[X1] + Tr[X2]
Q(X1∥Y1) +

Tr[X2]

Tr[X1] + Tr[X2]
Q(X2∥Y2) (4.2.3)

Proposition. 4.2.2 (Classical case) A divergence satisfying Definition 4.2.1 is either the

Kullback-Leibler divergence of the Renyi divergence:

Dα(p∥q) =
1

α− 1
log

∑n
x=1 p

α
xq

1−α
x∑n

x=1 px
(4.2.4)

for α ∈ (0, 1) ∪ (1,+∞). In the case of the KL-divergence g = 1 and in the α-divergence case

gα(t) = exp((α− 1)t). In the limit α↗ 1, α↘ 1 one gets Dα → KL

Definition. 4.2.3 (Quantum axiomatic definition of a divergence)

We are in the setting of Definition 4.2.1 and add some additional axioms to restrict the number of

families of divergences and also make them able to work with.

1. Positive definiteness: If ρ, σ ∈ S(H), D(ρ∥σ) ≥ 0 with equality if and only if ρ = σ.

2. Data processing inequality: For T a CPTP map D(ρ∥σ) ≥ D(T (ρ)∥T (σ)).

3. (a) Joint convexity: (α > 1) {ρi}i, {σi}i, 0 ≤ λi ≤ 1, then

Q
(∑

i

λiρi∥
∑
i

λiσi

)
≤
∑
i

λi D(ρi∥σi) (4.2.5)

(b) Joint concavity: (α < 1) {ρi}i, {σi}i, 0 ≤ λi ≤ 1, then

Q
(∑

i

λiρi∥
∑
i

λiσi

)
≥
∑
i

λi D(ρi∥σi) (4.2.6)

4. Dominance: X,Y, Y ′ ∈ B(H)+, Y ≤ Y ′, then D(X∥Y ) ≥ D(X∥Y ′)

4.2.1 Minimal Divergence

Definition. 4.2.4 (Pinching map)

We call the CPTP map P : L 7→
n∑

x=1
PxLPx with {Px}nx=1 orthogonal projections, i.e. Px = P ∗

x ,

n∑
x=1

Px = 1, which can be represented by

P(L) =
n∑

x=1

PxLPx =

n∑
y=1

UyLU
∗
y (4.2.7)

with Uy =
n∑

x=1
e

2πiyx
n Px. From that representation it is also quite obvious that P is indeed CPTP.

Remark. For H Hermitian, H =
n∑

x=1
λx|ex⟩⟨ex|, we can set Pλ =

∑
x:λx=λ

|ex⟩⟨ex| which means

H =
∑
x
λxPx. We then can create the pinching map using H that we call PH : L 7→

∑
x
PxLPx

and get the following properties
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• PH(L) ≥ 1
|specH|L

• [PH(L), H] = 0

Definition. 4.2.5 (Preperation map)

We define for ρ, σ ∈ S(H) the preperation map Λ which is a CPTP map. For that purpose we set

Λ = σ−1/2ρσ−1/2 and in spectral decomposition ∆ =
∑
x
λxΠx. Using this we define

q(x) = Tr[σΠx], p(x) = λxq(x) (4.2.8)

and with that

Λ(·) =
∑
x

⟨x, ·x⟩ 1

q(x)
σ1/2Πxσ

1/2. (4.2.9)

We find that Λ(p) = ρ and Λ(q) = σ.

Using the above we can define the minimal Renyi divergences

Definition. 4.2.6 (Minimal Renyi divergence (Sandwiched Renyi Divergences))

For ρ, σ ∈ S(H) α ∈ (1/2, 1) ∪ (1,∞),

Dα(ρ∥σ) lim
n→∞

1

n
Dα(ρ

⊗n∥σ⊗n)
DPI
≥ lim

n→∞

1

n
Dα(Pσ⊗n(ρ⊗n)∥σ⊗n)

=
1

α− 1
log Tr[(σ

1−α
2α ρσ

1−α
2α )α] =: D̃α(ρ∥σ)

(4.2.10)

and also the maximal ones

Definition. 4.2.7 (Maximal Renyi divergences (Maximal Renyi Divergences))

For ρ, σ ∈ S(H) α ∈ (1, 2), we find that

Dα(ρ∥σ) = Dα(Λ(p)∥Λ(q))
DPI
≤ Dα(p∥q) =

1

α− 1
log Tr[σ(σ−1/2ρσ−1/2)α] =: D̂α(ρ∥σ).

(4.2.11)

The quantity in the argument of the trace is called a geometric mean, which we also write as

σ#αρ = σ1/2(σ−1/2ρσ−1/2)ασ1/2 (4.2.12)

Remark. • Clearly D̂α(ρ∥σ) ≥ D̃α(ρ∥σ) with equality if and only if [ρ, σ] = 0.

• We have further that

lim
α→1

D̂α(ρ∥σ) = D̂(ρ∥σ) := Tr[ρ log(ρ1/2σ−1ρ1/2] (4.2.13)

lim
α→1

D̃α(ρ∥σ) = D(ρ∥σ) = Tr[ρ(log(ρ)− log(σ))] (4.2.14)

Definition. 4.2.8 (Petz Renyi Divergence)

For ρ, σ ∈ S(H) α ∈ (0, 1) we define the Petz Renyi Divergence as

Dα(ρ∥σ) :=
1

α− 1
log Tr[ρασ1−α] (4.2.15)

Definition. 4.2.9
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Alice (Sender) Bob (Receiver)

qubit

two bits

4.3 Quantum Hypothesis Testing

4.3.1 Symmetric State Discrimination

P(M) =
∑

(4.3.1)

Definition. 4.3.1

States ρ, σ ∈ S(H). A system

• Null hypothesis: The state of An is ρ⊗n.

• Alternate hypothesis: The state of An is σ⊗n.

We get a POVM {P, 1− P} with P an orthogonal projection. We call Tn a ”hypothesis test”. We

can make two kind of errors

1. First kind error: We wrongly conclude that the alternate hypothesis is correct even if the

state is ρ⊗n

αn(Tn; ρ) := Tr[ρ⊗n(1−Tn)]. (4.3.2)

2. Second kind error: We wrongly conclude that the null hypothesis is correct even if the

state is σ⊗n

βn(Tn;σ) := Tr[σ⊗nTn] (4.3.3)

We have the Chernoff bound as

min
Tn hypothesis

test

1

2
(αn(Tn; ρ) + βn(Tn;σ)) =

1

2
(1−

∥∥pρ⊗n − (1− p)σ⊗n
∥∥
1
) (4.3.4)

and the quantum Chernoff bound

lim
n→∞

− 1

n
log min

Tn hypothesis
test

1

2
(αn(Tn; ρ) + βn(Tn;σ)) = max

0≤s≤1
−Tr[ρsσ1−s].

= − min
0≤s≤1

logQs(ρ∥σ)

= max
0≤s≤1

(1− s)Ds(ρ∥σ)

(4.3.5)

We find a building block of the Petz Renyi divergence.

Dα(ρ∥σ) :=
1

α− 1
log Tr[ρασ1−α] α ∈ (0, 1) ∪ (1,+∞). (4.3.6)

So the interpretation of the Petz Renyi divergence is that it provides optimal exponential rate for

the error committed in the task of binary hypothesis testing when considering errors of kinds first

and second jointly.
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4.3.2 Asymmetric hypothesis testing

The goal of asymmetric quantum hypothesis testing is to minimize

βn(Tn;σ) := Tr[σ⊗nTn] (4.3.7)

under the constraint

αn(Tn; ρ) = Tr[ρ⊗n(1−Tn)] ≤ ε (4.3.8)

Lemma. 4.3.2 Let T = Pσ⊗n : B(H)→ B(H) the pinching map, ρ, σ ∈ S(H)

Pσ⊗n(X) :=

α∑
i=1

PiXPi, (4.3.9)

from the spectral decomposition of σ⊗n =
k∑

i=1

λiPi (k runs over the distinct eigenvalues of σ⊗n.)

We have

D(ρ∥σ) = lim
n→∞

1

n
D(Pσ⊗n(ρ⊗n), σ⊗n) (4.3.10)

4.3.3 Quantum Stein Lemma

The task is to distinguish two quantum states ρ, σ ∈ B(H). For every ε ∈ (0, 1), we find

lim
n→∞

− 1

n
log βn = D(ρ∥σ) (4.3.11)

Proof. We want to proof that D(ρ∥σ) is a lower bound on − 1
n log βn. Using Lemma 4.3.3 with

A = ρ⊗n and B = eλnσ⊗n (λ ∈ R will be chosen later). I.e. for s ∈ [0, 1],

e−sλn Tr[ρ1+sσ−1]n ≥ Tr[(ρ⊗n − eλnσ⊗n)Tn] ≥ (1− ε)− eλnβn(Tn;σn) (4.3.12)

where we used in the last step that αn ≤ ε. This gives us

βn(Tn;σ) ≥ e−nλ[(1− ε)− e−n(λn−f(s))] (4.3.13)

with f(s) := logTr[ρ1+sσ−s] having the properties

• f(0) = 0

• f ′(0) = D(ρ∥σ).

If we choose λ = D(ρ∥σ) + δ for δ > 0. Hence there exists a s ∈ (0, 1] such that

λs > f(s) (4.3.14)

which allows us to take the limit

lim
n→∞

− 1

n
log βn(Tn;σ) ≤ D(ρ∥σ) + δ (4.3.15)

Since δ was arbitrary

Lemma. 4.3.3 We have for self-adjoint A,B and all s ∈ [0, 1] that

∥A−B∥1 ≥ Tr[A+B]− 2Tr[ASB1−s] (4.3.16)

and further

Tr[(A+B)+] ≤ Tr[A1−sBs] (4.3.17)
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4.4 Quantum source coding

Let {|φ(x)⟩ , p(x)} be an ensemble of states and probabilities. We create

ρ =
∑
x

p(x)|φ(x)⟩⟨φ(x)| (4.4.1)

Alice sends n-letters to Bob, meaning she sends ρ⊗n. Hence there is a redundancy in the message

and the question now is: How much can we compress the message (sent by Alice) so that it is

perfectly understandable? We will see that the rate of compression is the von Neumann entropy

as we would expect abstracting from the classical case. The proof is quite extensive and not very

instructive so we will skip it here and just give an example.

Example. Let the ensemble be given by

|1⟩ =

(
1

0

)
, p =

1

2

|+⟩ = 1√
2

(
1

1

)
, p =

1

2

(4.4.2)

then clearly

ρ =
1

2
|1⟩⟨1|+ 1

2
|+⟩⟨+| =

(
3
4

1
4

1
4

1
4

)
(4.4.3)

having the eigenvalues and eigenstates

|0′⟩ =

(
cos π

8

sin π
8

)
, λ0′ = cos2

π

8
, |1′⟩ =

(
sin π

8

− cos π
8

)
, λ1′ = sin2

π

8
. (4.4.4)

We further find that
| ⟨0′, 1⟩ |2 = | ⟨0′,+⟩ |2 = cos2

π

8
≈ 0.8535,

| ⟨1′, 1⟩ |2 = | ⟨1′,+⟩ |2 = sin2
π

8
≈ 0.1465

(4.4.5)

Bob, hence receives |φ⟩ (with the sent state being either |1⟩ or |+⟩) and measures |φ⟩ = |0′⟩. The
fidelity is then

F = sup
|φ⟩

(
1

2
| ⟨1, φ⟩ |2 + 1

2
| ⟨+, φ⟩ |2). = 0.8545 (4.4.6)

Assume now that Alice can only send 3 letters, i.e. The question appears if there exists a clever

Alice Bob

3 letters-message

(only allows

for two qubits)

fig. 4.1: 3 letter transmission.

procedure that achieves a higher fidelity. The answer is yes! We find the overlaps

| ⟨0′0′0′, φ⟩ |2 = cos6
π

8
≈ 0.629

| ⟨0′0′1′, φ⟩ |2 = | ⟨0′1′0′, φ⟩ |2 = | ⟨1′0′0′, φ⟩ |2 = cos4
π

8
sin2

π

8
≈ 0.1067

| ⟨1′1′0′, φ⟩ |2 = | ⟨1′0′1′, φ⟩ |2 = | ⟨0′1′1′, φ⟩ |2 = cos2
π

8
sin4

π

8
≈ 0.0183

| ⟨1′1′1′, φ⟩ |2 = sin6
π

8
≈ 0.0031

(4.4.7)



4.4. QUANTUM SOURCE CODING 93

Hence the ’likely’ subspace is

Λ = span {|0′0′0′⟩ , |0′0′1⟩ , |0′1′0⟩ , |1′0′0′⟩} (4.4.8)

and the ’unlikely’ one is Λ⊥. We find that the probabilities are

PΛ ≈ 0.6219 + 3 · 0.1067 = 0.9419

PΛ⊥ ≈ 3 · 0.0183 + 0.0031 = 0.0581
(4.4.9)

after making an incomplete orthogonal measurement. The only way to perform this measurement

is

1. Alice applies U unitary that rotates the basis of Λ to {|·⟩ ⊗ |·⟩ ⊗ |0⟩} and the basis of Λ⊥ to

{|·⟩ ⊗ |·⟩ ⊗ |1⟩}

2. Alice measures the third qubit to perform the projection

• If the outcome is |0⟩

• If the outcome is |1⟩, Alice’s input was projected onto Λ⊥. She send |φcompr⟩ such that

|φ′⟩ = U−1(|φcompr⟩ ⊗ |0⟩) = |0′0′0′⟩ (4.4.10)

3. • Bob gets |φcompr⟩ the compressed state from Alice and then decompresses as follows

|φ′⟩ = U−1(|φcompr⟩ ⊗ |0⟩) (4.4.11)

• Bob does the same thing as before, i.e.

|φ′⟩ = U−1(|φcompr⟩ ⊗ |0⟩) (4.4.12)

He is always obtaining |0′0′0′⟩

The procedure is hence, as follows: Alice encodes qubits |φ⟩, she sends two qubits to Bob. Bob

then decodes the message and obtains ρ′:

|φ⟩⟨φ| 7→ ρ′ = PΛ|φ⟩⟨φ|PΛ + |0′0′0′⟩⟨φ|(1− PΛ)|φ⟩⟨0′0′0′|. (4.4.13)

The fidelity becomes

F = sup
|φ⟩∈{|1⟩,|+⟩}⊗3

⟨φ, ρ′φ⟩ = sup
|φ⟩∈{|1⟩,|+⟩}⊗3

{⟨φ, PΛφ⟩2 + (| ⟨φ, (1− PΛ)φ⟩ ⟨φ, 0′0′0′⟩ |)2} ≈ 0.9234

(4.4.14)

If we consider a longer message with more letters the fidelity improves if we compress not

to much the fidelity will continue to improve. Naturally we ask the question: How much can we

compress and the answer is: The optimal rate of compression is given by the von Neumann entropy.

For the specific example we find S(ρ) ≈ 0.6008. We will give the following theorem which tackles

exactly the above question without proof

Theorem. 4.4.1 (Schumacher’s theorem) The optimal rate of compression is given by the

von Neumann entropy.

This theorem is clearly the quantum version of the noiseless Shannon’s theorem.
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4.5 Entanglement

4.5.1 Entanglement concentration and dilution.

4.5.1.1 LOCC (Local operations and classical communication) maps

This maps describe a method in quantum information theory in which a local operation (product)

on a part of a system is performed and the result is communicated classically (usually one needs

to perform another local operation on the receiver).

For r ≥ 1, we define the LOCCr maps to be the set of LOCC operations that can be achieved

with r rounds of classical communication. E.g. the LOCC1 maps are the set of quantum in-

struments {Ex}, with Ex being a CP maps that do not increase the trace and are local for all

measurements, i.e.

Ex =
⊗
j

(Ej
x). (4.5.1)

We find that

LOCC1 ⊂ LOCCr ⊂ LOCCr+1 ⊂ LOCCN ⊂ LOCCN ⊂ SEP (4.5.2)

with

SEP := {E : E(ρ) =
∑

Ki
1 ⊗Ki

2 ⊗ . . .⊗Ki
Nρ(K

i
1 ⊗Ki

2 ⊗ . . .⊗Ki
N )∗} (4.5.3)

We want to give a fact that tackles the entanglement transformation under these LOCC maps. It

states that LOCC maps cannot generate entangled states out of product states. In general, LOCC

cannot increase entanglement.

Let now |φ⟩AB an Alice-Bob state. We form n-copies, i.e. ((|φ⟩AB)
⊗n). Lets further assume

that Alice and Bob share a large supply of maximally entangled Bell states. ((|ϕ+⟩AB)
⊗K). The

question is now, is there a transformation that transform between those two with high fidelity.

4.5.1.2 Asymptotic setting

Definition. 4.5.1

We say that a rate of conversion R from |ϕ+⟩ to |φ⟩ is asymptotically achievable if for any

ε, δ > 0 there exists an LOCC protocol

K

n
≤ R+ δ (4.5.4)

which prepares a target state |ψ+⟩⊗n
with fidelity F ≥ 1− ε.

Definition. 4.5.2 (Entanglement cost)

We define the entanglement cost to be

EC(|φ⟩) := inf{achievable rate for creating |φ⟩ from Bell states} (4.5.5)

Definition. 4.5.3

We say that a rate of conversion R′ from |φ⟩ to |ϕ+⟩ is asymptotically achievable if for any ε, δ > 0

there exists an LOCC protocol such that

K ′

n
≥ R′ − δ (4.5.6)

prepares |ϕ+⟩⊗K′
with fidelity F ≥ 1− ε.
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Definition. 4.5.4 (Distillable entanglement)

We define the distillable entanglement as

ED(|φ⟩) := sup{achievable rate for distilling Bell states from |φ⟩}. (4.5.7)

It clearly holds that

ED(|φ⟩) ≤ EC(|φ⟩) (4.5.8)

Example. Let

ρA =

(
1/2 0

0 1/2

)⊗K

= ρB (4.5.9)

We choose |φ⟩AB such that ρAB = |φ⟩⟨φ|AB is mapped to ρA and ρB under the respective partial

trace. Then

EC(|φ⟩) = ED(|φ⟩) = S(ρA) = S(ρB). (4.5.10)

One finds this in ...

Definition. 4.5.5 (Squashed entanglement)

We define the squashed entanglement as

Esq(ρAB) = inf{1
2
Iρ(A : B|C) : ρAB = TrC(ρABC)} (4.5.11)

Proposition. 4.5.6 (Properties of the squashed entanglement) We have that for ρAB ∈
S(HA⊗HB) we find the following

• Esq(ρAB ⊗ σAB) = Esq(ρAB) + Esq(σAB)

• EC ≥ Esq ≥ ED

4.5.2 Entanglement ”Monogamy”

We have the following

• Classical correlations are ”polyamorous”

• Quantum correlations are not.

– If ρB is pure then ρABC = ρAC ⊗ ρB .

– If ρAB is maximally entangled, then ρABC = ρAB ⊗ ρC .

– If Bob and Charlie share a pure state, then ρABC = ρA ⊗ ρBC .

We hence have that quantum entanglement implies monogamy and that

Esq(A : B) + Esq(A : C) ≤ Esq(A : BC) (4.5.12)

We need to proof Equation (4.5.12).

Proof. We have

1. Iρ(A : BC) = Iρ(A : C) + Iρ(A : B|C)

2. Iρ(A : BC|D) = Iρ(A : C|D) + Iρ(A : B|CD)

3. Iρ(A : BC|D) ≥ Esq(A : B) + Esq(A : C) ρABCD is also an extension of ρAB and ρAC .

4. Taking the infimum over ρABCD now gives the result.
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Charlie

Alice BobρABC

4.5.2.1 Accessible Information

The question that leads to the concept of the accessible information is: How much can one learn

from a measurement? To answer this question we make the following considerations

• Bob always guesses ρ(x) (with certainty) if {ρ(x)} is orthogonal.

• The conditional probability of Bob obtaining outcome y, if Alice sent ρ(x), is p(x|y) =

Tr[E(y)ρ(x)]. The joint distribution of Alice & Bob is p(x, y) = p(y|x)p(x).

• Before Bob’s ignorance about Alice’s state is quantified by H(X) = S(ρ), where ρ =∑
x
ρ(x)p(x).

• After the measurement the ignorance of Bob changes to H(X|Y ) = H(XY )−H(Y ).

We define

Definition. 4.5.7 (Information gain and accessible information)

The information gain is given by

I(X : Y ) = H(X)−H(X|Y ) (4.5.13)

further the accessibel information is given by

Acc(E) = max
E POVMs

I(X : Y ) = max
E POVMs

H(X)−H(X|Y ) ≤ H(X) (4.5.14)

Equality in the last inequality holds, if and only if {ρ(x)} are orthogonal.

Proposition. 4.5.8 (Holevo Bound) We find that

Acc(E) ≤ S(ρ) = S
(∑

x

|φ(x)⟩⟨φ(x)|p(x)
)

(4.5.15)

for the ensemble E = {|φ(x)⟩ , p(x)}x.

There are several facts that hold

• For mixed states the bound can be improved.

• Alice sends n qubits to Bob (2n bits), then one ?? more then n bits.
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• T CPTP map T : S(HB)→ S(HB′), then I(A : B) ≥ I(A : B′).

• Alice records her chosen state in X (classical)

• Bob records her chosen state in Y (classical)

• Bob’s information gain is I(X : Y )

• Alice prepares ρXE =
∑
x
p(x)|x⟩⟨x| ⊗ ρ(x)

• Bob measures it:

ρ(x) 7→
∑
y

M(y)ρ(x)M(y)∗ ⊗ |y⟩⟨y| (4.5.16)

where E(y) =M(y)∗M(y), then one finds

ρ′XAY =
∑
x,y

p(x)|x⟩⟨x|⊗ (4.5.17)

• We have: Iρ′(X : Y ) ≤ Iρ′(X : AY ) ≤ Iρ(X : Y )

• If Iρ(X : A) is an intrinsic property of the ensemble.

We define two quantities

Definition. 4.5.9 (Holevo chi and the Holevo bound)

The Holevo chi is given by χ(E) := I(X : Y ). The Holevo bound states that Acc(E) ≤ χ(E).

• Ensemble of pure states, gives that χ(E) = H(A).

• E = {ρ(x), p(x)}, E ′ = {T (ρ(x)), p(x)} with T a CPTP map, then

χ(E ′) ≤ χ(E). (4.5.18)

Hence we can set

χ(T ) = max
E′

χ(E ′) = max
E′

I(A : B) (4.5.19)

with T : E → E ′.

Compare the last point to the classical capacity of a channel

Ccl(T ) ≤ lim
n→∞

1

n
χ(T⊗n) (4.5.20)

where it holds that χ(T1 ⊗ T2) ≥ χ(T1) + χ(T2).

4.6 Geometric Renyi divergences and its application in quan-

tum channel capacities [8]

The two goals that we have are

• Study of geometric Renyi divergence

• Application to various channel capacity problems.
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4.6.1 Introduction

We assume an imperfect communication link between a sender and receiver, hence a noisy channel.

The capacity of a channel is then defined as the maximum rate at which information can be

transmitted through the channel reliably. For a classical channel, the (Shannon) capacity is just

the mutual information. In the case of a quantum channel, there are several different forms of

capacities (classical, quantum, private, with or without assistance, two-way or one-way, etc.). For

example, the entanglement-assisted quantum capacity is given by the quantum mutual information.

It is hard to find exact representations, and several works, therefore, focus on finding achievable

(lower) and ... (upper) bounds.

4.6.2 Desirable criteria (for bounds on capacities)

• Single-letter: Depends on a single use of the channel.

• Computable: Explicitly computed for a given quantum channel.

• General: Holds for arbitrary quantum channels.

• Strong converse: If the communication rate exceeds this bound, the fidelity of transmission

goes to zero (with many uses of the channel).

4.6.3 Geoemtric Renyi divergences

• Divergence: D(N (ρ)∥N (σ)) ≤ D(ρ∥σ) with N a quantum channel.

Sandwitched D̃α(ρ∥σ) := 1
α log Tr[(σ

1−α
2α ρσ

1−α
2α )α]

↓ α→ 1

D(ρ∥σ) := Tr[ρ log ρ− ρ log σ]
↑ α→ 1

Petz Dα(ρ∥σ) := 1
α−1 log Tr[ρ

ασ1−α]

(4.6.1)

We further have

Geometric D̂α(ρ∥σ) := 1
α−1 Tr[σ

1/2(σ−1/2ρσ−1/2)ασ1/2]

↓ α→ 1

D̂(ρ∥σ) := Tr[ρ log(ρ1/2σ−1ρ1/2)]

(4.6.2)

where Gα(σ∥ρ) = σ1/2(σ−1/2ρσ−1/2)ασ1/2 is called the geometric mean.

• We find the following relations

– D(ρ∥σ) ≤ D̂(ρ∥σ)

– D̃α(ρ∥σ) ≤ Dα(ρ∥σ)

– D̂(ρ∥σ) ≤ D̂α(ρ∥σ) for α > 1

– ...

And further, summarise properties in the following proposition

Proposition. 4.6.1 For N ,M : S(HA⊗HB)→ S(HA⊗HB) CPTP maps.

• The geometric Renyi channel divergence is given by

D̂α(N ∥M) := max
ρA∈S(HA)

D̂α(NA′→B(ϕAA′)∥MA′→B(ϕAA′) (4.6.3)

for ϕAA′ a purification of ρA.
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• We further have D(ρ∥σ) ≤ D̂(ρ∥σ) ≤ D̂α(ρ∥σ) ≤ Dmax(ρ∥σ).

• The closed-form expression is given by

D̂α(N ∥M) :=
1

α− 1
log
∥∥Tr[G1−α(J

N
AB , J

M
AB)]

∥∥
∞ (4.6.4)

• D̂α(N 1⊗N 2 ∥M1⊗M2) = D̂α(N 1 ∥M1) + D̂α(N 2 ∥M2)

• Chain rule:

D̂α(NA→B(ρAR)∥MA→B(σAR)) ≤ D̂α(ρAR∥σAR) + D̂α(NA→B ∥MA→B) (4.6.5)

• Semi-definite representation: α(l) = 1 + 2−l, l ∈ N . V := Set of subchannels characterized

by certain semidefinite conditions. We compute

min
M∈V

D̂α(N ∥M) (4.6.6)

using an SDP:

Compute: 2l logmin y

subject to M, {N i}li=0, JM, y are Hermitian.(
M JN

JN N l

)
,

{(
JN N i

N i NNi−1

)}l

i=1

≥ 0

y 1A ≥ TrB [M], N 0 = JM withM∈ V

Definition. 4.6.2 (Amortized channel divergence)

D̂a
α := max

ρAR,σAR

[
D̂α(NA→B(ρAR)∥MA→B(σAR))− D̂α(ρAR∥σAR)

]
(4.6.7)

From the chain rule, we immediately get

D̂a
α(N ∥M) = D̂α(N ∥M 0 (4.6.8)

the amortized collapse for α ∈ (1, 2]

4.6.4 Quantum communication

• Quantum capacities:

*) (Unassisted) quantum capacity Q

*) Two-way assisted capacity Q↔

Definition. 4.6.3 (Quantum capacity)

The quantum capacity or regularized coherent information is given by

Q(N ) := lim
n→∞

1

n
Ic(N⊗n) (4.6.9)

where

Ic(N ) := max
ρ∈SS(H)

[S(N (ρ))− S(N c(ρ))] (4.6.10)

and N c the complementary channel.

One finds the following, so-called generalized Rains bounds:

R(ρAB) := min
σAB∈PPT ′(A:B)

D(ρAB∥σAB) (4.6.11)

where

PPT ′(A : B) = {σAB : σAB ≥ 0, σTB
AB ≥ 0,

∥∥∥σTB
AB

∥∥∥
1
≤ 1} (4.6.12)
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Definition. 4.6.4 (Generalised Rains information (induced by D̂α)

We define the generalised Rains information as

R̂(N ) := max
ρA∈S(HA)

min
σAB∈PPT ′(A:B)

D̂α(NA′→B(ϕAA′)∥σAB) (4.6.13)

with ϕAA′ purification of ρA.

Theorem. 4.6.5

Q(N ) ≤ Q†(N ) ≤ R(N ) ≤ R̂α(N ) ≤ Rmax(N ) (4.6.14)



Chapter 5

Miscellanea

5.1 Monotonicity of the relative entropy

Theorem. 5.1.1 (Data processing inequality of the relative entropy) Let ρ, σ ∈ S(H),
T : H → H a CPTP map. Then we have

D(ρ∥σ) ≥ D(T (ρ)∥T (σ)) . (5.1.1)

We further get that equality holds, i.e. D(ρ∥σ) = D(T (ρ)∥T (σ)), if and only if there exists Rσ
T a

recovery map such that Rσ
T (ρ) = ρ, which is equivalent to

ρ = σ1/2T ∗(T (σ)−1/2T (ρ)T (σ)1/2)σ1/2 = Pσ
T (ρ) (5.1.2)

We are now interested in the distance between

D(ρ∥σ)−D(T (ρ)∥T (σ) ≥ ”dist(ρ,Pσ
T (ρ))” (5.1.3)

the ρ and its recovery.

Theorem. 5.1.2 (Fawzi-Renner, ’1.) If there exists a recovery map Rσ
T then

D(ρ∥σ)−D(T (ρ)∥T (σ) ≥ − logF (ρ, (Rσ
T ◦)(ρ)) ≥ 0 (5.1.4)

with the fidelity

F (ρ, σ) :=
∥∥√ρ√σ∥∥2

1
(5.1.5)

For the proof of this theorem we want to recall some facts from complex analysis

5.1.1 Brief overview on complex analysis

• f : C→ C, derivative at z0 ∈ C,

df

dz
|z=z0 = lim

z→z0

f(z)− f(z0)
z − z0

(5.1.6)

• U ⊆ C an open set, if f is differentiable at z0 ∈ U for every z0 ∈ U ⇒ f is holomorphic in U.

• f(x+ iy) = u(x, y) + iv(x, y), for x, y ∈ R, and u, v : R→ R if f is holomorphic ⇒ Cauchy-

Riemann equations.
∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(5.1.7)
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• If the first partial derivative of u and v are continuous and satisfy CR equations ⇒ f is

holomorphic.

Theorem. 5.1.3 (Liouville’s theorem) For f : C→ C holomorphic on U ⊆ C, open, bounded
and connected. Then, if z0 ∈ U s.t. |f(z0)| ≥ |f(z)| ∀z in a neighbourhood (open set containing

z0) of z0 ⇒ f is constant in U .

Corollary. 5.1.3.1 (Maximum modulus principle on a strip) Let

S = {z ∈ C | 0 < Re(z) < 1} (5.1.8)

S = {z ∈ C | 0 ≤ Re(z) ≤ 1} (5.1.9)

∂S = {z ∈ C | Re(z) = 0 or Re(z) = 1} (5.1.10)

If f : S → C is holomorphic on S, and continuous on ∂S, then the supremum of |f | is attained on

∂S.

Theorem. 5.1.4 (Hadamard three-lines) Let f : S → C be bounded on S, holomorphic on S

and continuous on ∂S. Let θ ∈ (0, 1) and

M(θ) := sup
t∈R
|f(θ + it)| . (5.1.11)

Then, logM(θ) is convex, which gives that

logM(θ) ≤ (1− θ) logM(0) + θ logM(1) (5.1.12)

Theorem. 5.1.5 (Hirschmann) Let f : S → C bounded on S, holomorphic on S and continous

on ∂S. Then θ ∈ (0, 1),

log |f(θ)| ≤
∞∫

−∞

dt
(
αθ(t) log[|f(it)|1−θ] + βθ(t) log[|f(1 + it)|θ]

)
(5.1.13)

with

αθ(t) =
sin(πθ

2(1− θ)[cosh(θt]− cos(πθ)
, β0(t) =

sin(πθ)

2θ[cosh(πt) + cos(πθ)]
. (5.1.14)

Taking the limit θ → 0, we find

π

2(cosh(πt) + 1)

∞∫
−∞

dtβθ(t) =

∞∫
−∞

dtαθ(t) = 1 αθ(t), β0(t) ≥ 0 ∀t,∀θ (5.1.15)

Theorem. 5.1.6 (Stein-Hirschman) G : S → B(H) operator-valued function, with G bounded

on S, holomorphic on S, continuous on ∂S. Let θ ∈ (0, 1) and define

1

pθ
=

1− θ
p0

+
θ

p1
, p0, p1 ∈ [1,∞] . (5.1.16)

We then find that

log ∥G(θ)∥pθ ≤
∞∫

−∞

dt
(
αθ(t) log[∥G(it)∥1−θ

p0
] + βθ(t) log[∥G(1 + it)∥θp1

]
)

(5.1.17)

Proof of Theorem 5.1.2. • Main ingredient: Interpolation

• Isometric map:

Uσ,t(M) := σitMσ−it, Uσ,t(σ) = σ ∀t ∈ R (5.1.18)
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• Rotated Petz recovery map:

Rσ,t
T )(X) := (Uσ,−t ◦Pσ

T ◦UT (σ),t)(X) (5.1.19)

• Renyi infromation measure

∆̃α(ρ, σ, T ) :=
1

α− 1
log Q̃α(ρ, σ, T )

=
1

α− 1
log
∥∥∥(T (ρ) 1−α

2α T (σ)
α−1
2α ⊗ 1E)Uσ

1−α
2α ρ

1
2

∥∥∥2α
2α

(5.1.20)

where U : H → H′⊗HE is the isometric extension of T .

• lim
α→1

∆̃α(ρ, σ, T ) = D(ρ∥σ)−D(T (ρ)∥T (σ))

• ∆̃α= 1
2
(ρ, σ, T ) = − logF (ρ,Pσ

T ◦T (ρ)).

• We find that

D(ρ∥σ)−D(T (ρ)∥T (σ)) ≥ −
∞∫

−∞

dt β0(t) log[F (ρ, (R
σ, t2
T ◦T )(ρ))] (5.1.21)

and with

G(z) := (T (ρ)z/2T (σ)−z/2 ⊗ 1E)Uσ
z/2ρ1/2 (5.1.22)

p0 = 2, p1 = 1, θ ∈ (0, 1), pθ = 2
1+θ . With those we find

∥G(θ)∥pθ= 2
1+θ

=
∥∥∥(T (ρ) θ2 T (σ)− θ

2 ⊗ 1E)Uσ
θ
2 ρ

1
2

∥∥∥
2

1+θ

∥G(it)∥2 =
∥∥∥(T (ρ) it2 T (σ)− it

2 ⊗ 1E)Uσ
it
2 ρ

1
2

∥∥∥
2

1+θ

≤
∥∥∥ρ1/2∥∥∥

2
= 1

∥G(1 + it)∥1 =
∥∥∥(T (ρ) 1+it

2 T (σ)−
1+it

2 ⊗ 1E)Uσ
1+it

2 ρ
1
2

∥∥∥
1
=
√
F (ρ,Rσ, t2

T ◦T (ρ)) .

(5.1.23)

Applying Stein-Hirschman gives

log
∥∥∥(T (ρ) θ2 T (σ)− θ

2 ⊗ 1E)Uσ
θ
2 ρ

1
2

∥∥∥
2

1+θ

≤
∫
dtβθ(t) log[(F (ρ,R

σ, t2
T ◦T (ρ)) θ2 ] (5.1.24)

modifying this a little we find

− 2

θ
log
∥∥∥(T (ρ) θ2 T (σ)− θ

2 ⊗ 1E)Uσ
θ
2 ρ

1
2

∥∥∥
2

1+θ

≤ −
∫
dtβθ(t) log[F (ρ,R

σ, t2
T ◦T (ρ)]. (5.1.25)

Now setting θ = 1−α
α , gives

∆̃α(ρ, σ, T ) ≥ −
∞∫

−∞

dtβ 1−α
α

(t) log[F (ρ,Rσ, t2
T ◦T (ρ))] (5.1.26)

taking the limit α→ 1 gives now

D(ρ∥σ)−D(T (ρ)∥T (σ) ≥ −
∞∫

−∞

β0(t) log[F (ρ,R
σ, t2
T ◦T (ρ))] (5.1.27)

From this result one immediately gets that D(ρ∥σ) = D(T (ρ)∥T (σ)) holds if and only if

Rσ,t
σ,T (ρ) = ρ for all t ∈ R.
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5.1.2 Chainrule of quantum channels [4]

Definition. 5.1.7

Let P,Q be probability densities over X = {x}. Let further α ∈ (1,∞), further

Dα(P∥Q) =
1

α− 1
logQα(P∥Q) (5.1.28)

with

Qα(P∥Q) =


∑
x∈X

P (x)
(

P (x)
Q(x)

)α−1

P ≪ Q

+∞
(5.1.29)

For α→ 1, we find that

DKL(P∥Q) =


∑
x∈X

P (x) log
(

P (x)
Q(x)

)
P ≪ Q

+∞
(5.1.30)

For α→∞ we find

Dα(P∥Q) = max
x

log
P (x)

Q(x)
(5.1.31)

For two systems X,Y one can apply the chain rule. Further for α ∈ [1,∞] we find

Dα(PXY ∥QX,Y ) ≤ Dα(PX∥QX) + max
x∈X

D(PY |X=x∥QY |X=x (5.1.32)

In the quantum setting for ρ, σ ∈ S(H).

Definition. 5.1.8

We define

Dα(ρ∥σ) :=
1

α− 1
logQα(ρ∥σ) (5.1.33)

which has the following properties

1. If [ρ, σ] = 0, then Dα(ρ∥σ) = Dα(ρ∥σ). Classical quantum states, for ρ ∈ S(HA⊗HB) with

ρ =
∑
x∈X

px|x⟩⟨x| ⊗ ρx

σ =
∑
x∈X

qx|x⟩⟨x| ⊗ σx
(5.1.34)

we find

Qα(ρ∥σ) =
∑
x

pαxq
1−α
x Qα(ρ

x∥σx) (5.1.35)

2. Data processing inequality. We find

Dα(ρ∥σ) ≥ Dα(T (ρ)∥T (σ)) (5.1.36)

with T a quantum channel.

The smallest of those is the Renyi quantum divergence: Measured Renyi divergence defined as

DM
α (ρ∥σ) := sup

M
Dα(M(ρ)∥M(σ)) (5.1.37)

with M a rank-one projective measurment, defined using a ONB {|x⟩} and

M(·) =
∑
x

⟨x, ·x⟩ |x⟩⟨x|. (5.1.38)
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The largest are the Geometric Renyi divergence, defined via

D̂α(ρ∥σ) :=
1

α− 1
Q̂α(ρ∥σ) (5.1.39)

where

Q̂α(ρ∥σ) := Tr[σ1/2(σ−1/2ρσ−1/2)ασ1/2] (5.1.40)

In the limit:

D̂α(ρ∥σ)
α→1−→ D̂(ρ∥σ) := Tr[ρ log(ρ1/2σ−1ρ1/2)] (5.1.41)

Definition. 5.1.9 (Pinching map)

The pinching map is defined via σ =
∑
λ

λPλ with Pσ : ρ 7→
∑
PλρPλ. It has the following

properties:

1. [Pσ(ρ), σ] = 0 ∀ρ

2. Tr[Pσ(ρ)σ] = Tr[ρσ] ∀ρ

3. Pσ(ρ) ≥ | spec(σ)|−1ρ, which scales as | spec(σ⊗n)| = O(poly(n))

4. Pα(·) =
∫
µ(dt)σit(·)σ−it

Lemma. 5.1.10 (Matsumoto) For ρ, σ ∈ S(H), α ∈ (0, 2], we have

D̂α(ρ∥σ) = inf
(P,Q,Γ)

Dα(P∥Q) (5.1.42)

with Γ(P ) = ρ, Γ(Q) = σ, where Γ is a quantum channel. The infimum is attained for the following

map: We first decompose

σ−1/2ρσ−1/2 =
∑
x∈X

λxΠx (5.1.43)

and then define

Γ(·) =
∑
x

⟨x, ·x⟩
Q(x)

σ1/2Πxσ
1/2 (5.1.44)

with Q(x) := Tr[σΠx], P (x) := λxQ(x)

Definition. 5.1.11

If in addition to Items 1 and 2 we demand addititvity, we obtain the Sandwiched Renyi divergences,

defined as

D̃α(ρ∥σ) :=
1

α− 1
log Q̃α(ρ∥σ) (5.1.45)

with

Q̃α(ρ∥σ) := Tr[(σ
1−α
2α ρσ

1−α
2α )α] (5.1.46)

we find for α→ 1

D(ρ∥σ) := Tr[ρ(log ρ− log σ)] (5.1.47)

and for α→∞
D̃∞(ρ∥σ) := inf{λ ∈ R : ρ2λσ} (5.1.48)

Lemma. 5.1.12 Let ρ, σ ∈ S(H), T1, T2 quantum channels, α ∈ (0,∞). Then

Q̃α(T1(ρ)∥T2(σ)) ≤ | spec(σ)|αQ̃α(T1 ◦ P(ρ)∥T2(σ)). (5.1.49)
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Proof. We have

T1(ρ) ≤ | spec(σ)|T1 ◦ Pσ(ρ) (5.1.50)

then

Tr[(T2(σ)
1−α
2α T1(ρ)T2(σ)

1−α
2α )α] ≤ | spec(σ)|α Tr[(T2(σ)

1−α
2α T1 ◦ Pσ(ρ)T2(σ)

1−α
2α )α] (5.1.51)

as the trace is monotone and t 7→ tα as well.

Definition. 5.1.13 (Renyi Divergence of quantum channels)

Let T1, T2 CPTP maps, then the Renyi Divergence of quantum channels is defined as

Dα(T1∥T2) := sup
ρ∈S(H)

Dα(T1(ρ)∥T2(ρ)) (5.1.52)

Theorem. 5.1.14 (Chain rule for quantum channels) Let ρ, σ ∈ S(H), T1, T2 CPTP maps,

α ∈ (0,∞), then

Dα(T1(ρ)∥T2(σ)) ≤ D̂α(ρ∥σ) + Dα(T1∥T2) (5.1.53)

In particular, D̂α(T1(ρ)∥T2(σ)) ≤ D̂α(ρ∥σ) + D̂α(T1∥T2).

Proof. Let T1(ρ) =
∑
x
p̂xT1(Γ(|x⟩⟨x|)) and T2(σ) =

∑
x
q̂xT2(Γ(|x⟩⟨x|)). Then

Dα(T1(ρ)∥T2(σ)) ≤ Dα

(∑
x

p̂xT1(Γ(|x⟩⟨x|))∥
∑
x

q̂xT2(Γ(|x⟩⟨x|))
)

=
1

α− 1
log
∑
x

p̂αx q̂
1−α
x 2Dα(T1(Γ(|x⟩⟨x|))∥T2(Γ(|x⟩⟨x|)))

≤ Dα(p̂∥q̂) + max
x

Dα(T1(ρ
x)∥T2(ρx))︸ ︷︷ ︸

≤Dα(T1∥T2)

(5.1.54)

where we used that Γ(|x⟩⟨x|) = ρx

We have that

D̂(T1∥T2) = lim
n→∞

1

n
D̂(T⊗n

1 ∥T
⊗n
2 ) (5.1.55)

further we can define

D̂∞
α (T1∥T2) = lim

n→∞

1

n
Dα(T

⊗n
1 ∥T

⊗n
2 ) (5.1.56)

and the stabilised version of this

Dstab
α (T1∥T2) = sup

ρAR∈S(HA⊗SR)

Dα((T1 ⊗ IR)(ρAR)∥(T2 ⊗ IR)(ρAR)) (5.1.57)

and now

Dstab,∞
α (T1∥T2) = lim

n→∞

1

n
Dstab

α (T⊗n
1 ∥T

⊗n
2 ) (5.1.58)

The question is now if

lim
α→1

D̂stab,∞
α (T1∥T2) = D̂stab(T1∥T2) (5.1.59)



Appendix A

Interlude

A.1 Quantum Many Body Systems

A.1.1 Master Equation

The master equation is an approximate version of the physical processes that are happening. It

comes in the form of a differential equation which constitutes a good approximation to the evolution

of a density matrix on a system S.

• Coherent case (evolution of a closed system). The system is isolated which means the dy-

namics of the system is described by the Schrödinger equation (infinitesimal). We obtain the

global evolution by integrating.

• Decoherent case (open system). We make one fundamental assumption, namely Markovian-

ity, i.e for

t 7→ ρ(t) (A.1.1)

ρ(t+ dt) only depends on ρ(t) (but not on previous times). Differently put the environment

holds no memory. We can now look at the system and its environment as a closed system to

obtain:

ρSE = ρS ⊗ ρE
QC7→ USE(ρS ⊗ ρE)U∗

SE
QC7→ TrE [USE(ρS ⊗ ρE)U∗

SE ] (A.1.2)

This means

ρS 7→ ρ′S := TrE [USE(ρS ⊗ ρE)U∗
SE ] (A.1.3)

is a quantum channel (CPTP map). This is still an infinitesimal description. We further

assume that there is only weak coupling between the system and the environment. Meaning

we can do something like the following

” ρS(t)⊗ ρE︸ ︷︷ ︸
ρSE(t)

dt7→ ρSE(t+ dt) = ρS(t+ dt)⊗ ρE”, (A.1.4)

i.e. the environment does not evolve. We now frame this concepts a little more formally.

The Markovian approximation allows us to describe the system using a quantum Markov

107
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semigroup (QMS), which is a 1-parameter semigroup1 {Tt}t≥0 of CPTP maps

Tt : S(H)→ S(H) (A.1.5)

We obtain the generator of the group by differentiation

d

dt
Tt = L◦Tt = Tt ◦ L . (A.1.6)

This is called the Liouville equation. It gives us the generator of the group

Tt = etL with L the Liouvillian (A.1.7)

With all the above at hand, we will now formalise our two description above

• Closed system:

ρ̇ = −i[HS , ρ] (A.1.8)

with the solution

ρ(t) = e−iHtρ(0) (A.1.9)

• Open system: The Hamilton operator can be decomposed as follows

H = HS +HE +HSE . (A.1.10)

The evolution equation becomes

ρ̇ = L[ρ] (A.1.11)

and its solution

ρ(t) = etLρ(0). (A.1.12)

This gives us using the Kraus decomposition for the channel Tt

ρ(t) = Tt(ρ(0)) =
∑
µ

Mµ(t)ρ(0)Mµ(t)
∗, (A.1.13)

with Mµ(t) called jump operators. We have

ρ(dt) = ρ(0) +O(dt). (A.1.14)

We have

– M0 = 1+O(dt)

– Others: Order O(
√
dt)

meaning

Mµ =
√
dtLµ

M0 = 1+(−iHS +K)dt.
(A.1.15)

We need

1 =
∑
µ

M∗
µ(t)Mµ(t) = 1+dt

(
2K +

∑
µ>0

L∗
µLµ

)
(A.1.16)

1We have the properties

– T0 = 1

– Ts ◦ Tt = Tt+s
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from which we get

K = −1

2

∑
µ>0

L∗
µLµ (A.1.17)

giving us the master equation

ρ̇ = L[ρ] = −i[H̃s, ρ] +
∑
µ>0

(LµρL
∗
µ −

1

2
ρL∗

µLµρ) (A.1.18)

A.2 Operator monotone functions

Definition. A.2.1 (Operator montone function)

A function f : I ⊂ R→ R it called operator monotone, if

f(A) ≤ f(B) (A.2.1)

for A,B Hermitian operators with spectrum in I and A ≤ B.

Definition. A.2.2 (Operator convex function)

A function f : I ⊂ R→ R is operator convex if

f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B) (A.2.2)

for Hermitian A,B with spectrum in I and λ ∈ [0, 1]

Theorem. A.2.3 (Loewner-Heinz theorem) • −1 ≤ P ≤ 0, f(t) = −tp operator mono-

tone and operator convex.

• 0 < p ≤ 1, f(t) = tp operator monotone and operator concave.

• 1 < p ≤ 2, f(t) = tp operator convex.

• f(t) = log(t) is operator monotone and operator concave.

• f(t) = t log(t) is operator convex.
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