Part 1: Brief review on Classical Information Theory

Exercise 1: Properties of entropies

1. Show that $0 \leq H(X) \leq \log _{2}(K)$.
2. Show that $H(X \mid Y) \geq 0$ and further
a) $H(X, Y) \geq H(X)$ with equality if and only if $X=f(Y)$.
b) $I(X: Y) \leq H(Y)$ with equality if and only if $X=f(Y)$.
3. Subadditivity: Show that

$$
H(X, Y) \leq H(X)+H(Y)
$$

with equality if and only if X, Y are independent.
4. Show that

$$
H(X \mid Y) \leq H(X)
$$

and thus $I(X: Y) \geq 0$ with equality if and only if X, Y are independent.
5. Chain rule: For X_{1}, \ldots, X_{n}, Y random variables, show

$$
H\left(X_{1}, \ldots, X_{n} \mid Y\right)=\sum_{i=1}^{n} H\left(X_{i} \mid Y, X_{1}, \ldots, X_{i-1}\right)
$$

Exercise 2: Fano's inequality

Let X and Y be two random variables and $\tilde{X}=f(Y)$ a function of Y with which we intend to guess the value of X. Let $p_{e}=p(X \neq \tilde{X})$ be the error made by guessing X with \tilde{X}. Then

$$
H\left(p_{e}\right)+p_{e} \log (|X|-1) \geq H(X \mid Y)
$$

Exercise 3: Flipping bits in strings

The number of strings flipping $n p$ bits is $n H(p)$, as the following approximation holds:

$$
\log \binom{n}{n p} \simeq n H(p)
$$

Part 2: Basic Notions on Quantum Information Theory

Exercise 4: Bra-kets and inner products

1. Write down the matrix representation for the following expressions:
a) $|0\rangle\langle 1|$.
b) $|0\rangle\langle 0|+|1\rangle\langle 1|$.
c) $|+\rangle\langle 0|$.
2. Define the Hadamard gate as

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Express it in the computational basis.
3. Compute $H|+\rangle$ using the bra-ket notation.
4. Let $|\varphi\rangle,|\psi\rangle \in \mathbb{C}^{n}$ and $A \in \mathbb{C}^{n \times n}$. Prove that the following holds:

$$
\langle\varphi \mid A \psi\rangle=\left\langle A^{*} \varphi \mid \psi\right\rangle .
$$

5. Prove that unitary matrices are norm-preserving.

Exercise 5: Tensor products

1. Consider two vectors $\binom{a_{1}}{a_{2}},\binom{b_{1}}{b_{2}} \in \mathbb{C}^{2}$. Express the product

$$
\binom{a_{1}}{a_{2}} \otimes\binom{b_{1}}{b_{2}}
$$

as a vector in \mathbb{C}^{4}.
2. Given two matrices $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right),\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right) \in \mathbb{C}^{2 \times 2}$, write an expression for

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \otimes\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
$$

as a matrix of dimension 4×4.

Exercise 6: Bell states

Let us define the Bell states as

$$
\begin{aligned}
& \left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle), \quad\left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \\
& \left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle), \quad\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

Show that they form an orthonormal basis of $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$.

Exercise 7: Pauli matrices

The Pauli matrices are given by:

$$
I=\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad X=\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad Y=\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad Z=\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

1. Verify the following commutation relations:

$$
[X, Y]=2 i Z, \quad[Y, Z]=2 i X, \quad[Y, Z]=2 i Y .
$$

2. Verify the following anticommutation relations:

$$
A, B=2 \delta_{A, B}, \quad \text { for } A, B \in\{X, Y, Z\}
$$

3. Compute the eigenvalues of the Pauli matrices.

Exercise 8: Hermitian matrices of dimension 2×2

Let $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{C}$. Consider the following matrix:

$$
A=\left(\begin{array}{cc}
\frac{1+\alpha}{2} & \beta \\
\beta^{*} & \frac{1-\alpha}{2}
\end{array}\right) .
$$

1. Show that A is Hermitian and $\operatorname{tr}(A)=1$.
2. Show that any Hermitian matrix in dimension 2×2 with unit trace can be expressed in this form.
3. Show that A can be uniquely expressed as a linear combination of the Pauli matrices.

Now, consider an arbitrary 2×2 Hermitian matrix ρ with unit trace, which we can write as

$$
\rho=\frac{1}{2}\left(I+n_{x} X+n_{y} Y+n_{z} Z\right)
$$

with $n_{x}, n_{y}, n_{z} \in \mathbb{R}$.

1. Compute the eigenvalues of ρ and express them in terms of n_{x}, n_{y}, n_{z}.
2. Denote $\mathbf{n}:=\left(n_{x}, n_{y}, n_{z}\right)$. Show that $\rho \geq 0$ if, and only if, $|\mathbf{n}| \leq 1$.
3. Show that if $|\mathbf{n}|=1$, then there are $v_{1}, v_{2} \in \mathbb{C}$ such that

$$
\rho=\binom{v_{1}}{v_{2}}\left(\begin{array}{cc}
v_{1}^{*} & v_{2}^{*}
\end{array}\right) .
$$

