Quantum Shannon Theory and Beyond SoSe 2022

Sheet 1

Universität Tübingen Ángela Capel Cuevas

Part 1: Brief review on Classical Information Theory

Exercise 1: Properties of entropies

- 1. Show that $0 \le H(X) \le \log_2(K)$.
- 2. Show that $H(X|Y) \ge 0$ and further
 - a) $H(X,Y) \ge H(X)$ with equality if and only if X = f(Y).
 - b) $I(X:Y) \leq H(Y)$ with equality if and only if X = f(Y).
- 3. Subadditivity: Show that

$$H(X,Y) \le H(X) + H(Y) \,,$$

with equality if and only if X, Y are independent.

4. Show that

$$H(X|Y) \le H(X)$$

and thus $I(X : Y) \ge 0$ with equality if and only if X, Y are independent.

5. Chain rule: For X_1, \ldots, X_n, Y random variables, show

$$H(X_1, \dots, X_n | Y) = \sum_{i=1}^n H(X_i | Y, X_1, \dots, X_{i-1}).$$

Exercise 2: Fano's inequality

Let X and Y be two random variables and $\tilde{X} = f(Y)$ a function of Y with which we intend to guess the value of X. Let $p_e = p(X \neq \tilde{X})$ be the error made by guessing X with \tilde{X} . Then

$$H(p_e) + p_e \log(|X| - 1) \ge H(X|Y)$$
.

Exercise 3: Flipping bits in strings

The number of strings flipping np bits is nH(p), as the following approximation holds:

$$\log \binom{n}{np} \simeq nH(p) \,.$$

Part 2: Basic Notions on Quantum Information Theory

Exercise 4: Bra-kets and inner products

- 1. Write down the matrix representation for the following expressions:
 - a) $|0\rangle \langle 1|$.
 - b) $|0\rangle \langle 0| + |1\rangle \langle 1|$.
 - c) $\left|+\right\rangle \left\langle 0\right|$.
- 2. Define the Hadamard gate as

$$H = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1\\ 1 & -1 \end{array} \right) \,.$$

Express it in the computational basis.

- 3. Compute $H |+\rangle$ using the bra-ket notation.
- 4. Let $|\varphi\rangle$, $|\psi\rangle \in \mathbb{C}^n$ and $A \in \mathbb{C}^{n \times n}$. Prove that the following holds:

$$\langle \varphi | A \psi \rangle = \langle A^* \varphi | \psi \rangle .$$

5. Prove that unitary matrices are norm-preserving.

Exercise 5: Tensor products

1. Consider two vectors $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$, $\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \in \mathbb{C}^2$. Express the product $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \otimes \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$

as a vector in \mathbb{C}^4 .

2. Given two matrices $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, $\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \in \mathbb{C}^{2 \times 2}$, write an expression for $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \otimes \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$

as a matrix of dimension 4×4 .

Exercise 6: Bell states

Let us define the Bell states as

$$\begin{split} |\Phi^+\rangle &= \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right), \quad |\Phi^-\rangle &= \frac{1}{\sqrt{2}} \left(|00\rangle - |11\rangle \right) \\ |\Psi^+\rangle &= \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle \right), \quad |\Psi^-\rangle &= \frac{1}{\sqrt{2}} \left(|01\rangle - |10\rangle \right). \end{split}$$

Show that they form an orthonormal basis of $\mathbb{C}^2 \otimes \mathbb{C}^2$.

Exercise 7: Pauli matrices

The Pauli matrices are given by:

$$I = \sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

1. Verify the following commutation relations:

$$[X,Y] = 2iZ$$
, $[Y,Z] = 2iX$, $[Y,Z] = 2iY$.

2. Verify the following anticommutation relations:

$$A, B = 2\delta_{A,B}$$
, for $A, B \in \{X, Y, Z\}$.

3. Compute the eigenvalues of the Pauli matrices.

Exercise 8: Hermitian matrices of dimension 2×2

Let $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{C}$. Consider the following matrix:

$$A = \begin{pmatrix} \frac{1+\alpha}{2} & \beta\\ \beta^* & \frac{1-\alpha}{2} \end{pmatrix}.$$

- 1. Show that A is Hermitian and tr(A) = 1.
- 2. Show that any Hermitian matrix in dimension 2×2 with unit trace can be expressed in this form.
- 3. Show that A can be uniquely expressed as a linear combination of the Pauli matrices.

Now, consider an arbitrary 2×2 Hermitian matrix ρ with unit trace, which we can write as

$$\rho = \frac{1}{2}(I + n_x X + n_y Y + n_z Z)$$

with $n_x, n_y, n_z \in \mathbb{R}$.

- 1. Compute the eigenvalues of ρ and express them in terms of n_x, n_y, n_z .
- 2. Denote $\mathbf{n} := (n_x, n_y, n_z)$. Show that $\rho \ge 0$ if, and only if, $|\mathbf{n}| \le 1$.
- 3. Show that if $|\mathbf{n}| = 1$, then there are $v_1, v_2 \in \mathbb{C}$ such that

$$\rho = \left(\begin{array}{c} v_1 \\ v_2 \end{array}\right) \left(\begin{array}{c} v_1^* & v_2^* \end{array}\right) \,.$$