Sheet 3

Quantum nonlocality and nonlocal games

Exercise 1: Hidden variable models

Consider two particles in the following state:

$$
\rho=\frac{5}{8}\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+\frac{1}{8}\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|+\frac{1}{8}\left|\Phi^{-}\right\rangle\left\langle\Phi^{-}\right|+\frac{1}{8}\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|
$$

The aim of this exercise is to construct a hiddel variable model in the following form: First, we consider a local hiddel variable as the vector

$$
\vec{\lambda}=(\sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi), \cos (\theta)),
$$

for certain angles ϕ and θ. This vector is distributed uniformly on the unit sphere. Now we construct the measurements for both particles.

- For particle A, given any vector \vec{a}, the result of the measurement is 1 with probabily $P_{A}(\vec{a}, \vec{\lambda})=$ $\cos ^{2}\left(\alpha_{1} / 2\right)$, where α_{1} is the angle between \vec{a} and $\vec{\lambda}$, and 0 elsewhere.
- For particle B, given any vector \vec{b}, the result of the measurement is

$$
P_{A}(\vec{a}, \vec{\lambda})= \begin{cases}1 & \text { if } \cos ^{2}\left(\alpha_{2} / 2\right)<1 / 2 \\ 0 & \text { if } \cos ^{2}\left(\alpha_{2} / 2\right) \geq 1 / 2\end{cases}
$$

where α_{2} is the angle between \vec{b} and $\vec{\lambda}$.
We can ask the following questions:

- Is the state ρ separable?
- Calculate the probability for the outcomes of both measurements for the state ρ.
- Are these probabilities compatible with the hidden variable model?

Exercise 2: CHSH inequality

Consider the CHSH inequality with the following choices for Alice's and Bob's measurements:

- $A_{1}=Z_{A}$.
- $A_{2}=\cos \left(\frac{\pi}{4}\right) Z_{A}+\sin \left(\frac{\pi}{4}\right) X_{A}$.
- $B_{1}=Z_{B}$.
- $B_{2}=\cos \left(\frac{\pi}{4}\right) Z_{B}-\sin \left(\frac{\pi}{4}\right) X_{B}$.
and the following choice for the state shared by Alice and Bob:

$$
\rho=p \frac{I}{4}+(1-p)|\phi\rangle\langle\phi|,
$$

where $|\phi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$.

- First, calculate the CHSH quantity:

$$
\langle\phi| A_{1} B_{1}+A_{2} B_{1}+A_{1} B_{2}-A_{2} B_{2}|\phi\rangle
$$

as a function of p. For which values of p is the CHSH inequality violated?

Exercise 3: CHSH game

What are the classical and entangled values of the CHSH game, as introduced in the lectures?

Exercise 4: FFL game

What are the classical and entangled values of the FFL game, as introduced in the lectures?

