Quantum Shannon Theory and Beyond SoSe 2022

Sheet 4

Approximating pure bipartite states by local operations

Let $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ be a composite Hilbert space, where $\dim(\mathcal{H}_A) = \dim(\mathcal{H}_B) =: d$ and consider a mixed density matrix ρ_{AB} on it. Assume that you can perform operations of the following form on the mixed state:

$$(\mathrm{id}_A \otimes T)(\rho_{AB}),$$
 (1)

where $T : \mathcal{B}(\mathcal{H}_B) \to \mathcal{B}(\mathcal{H}_B)$ is a arbitrary quantum channel (that is, T is a completely positive and trace-preserving linear map). Your task now is to choose T such that the resulting density matrix is as similar as possible to $|\phi\rangle \langle \phi|$, for a certain pure state $|\phi\rangle \in \mathcal{H}_{AB}$. For our measure of similarity, we choose the Fidelity of $(\mathrm{id}_A \otimes T)(\rho_{AB})$ and $|\phi\rangle$, which is given by

$$\langle \phi | (\mathrm{id}_A \otimes T)(\rho_{AB}) | \phi \rangle.$$
 (2)

Hence the optimal value of our problem is given by

$$\sup_{T \text{ channel}} \langle \psi | (\mathrm{id}_A \otimes T)(\rho_{AB}) | \psi \rangle .$$
(3)

Exercise 1: Well defined?

Show that the supremum in (3) is attained by some channel T_{opt} .

In the following we will reformulate this problem as an SDP. To do so, we use the Choi-Jamiolkowski isomorphism.

Definition. 0.1. The Choi matrix $C_T \in \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2)$ of a linear map $T : \mathcal{B}(\mathcal{H}_2) \to \mathcal{B}(\mathcal{H}_1)$ is given by

$$C_T := (T \otimes \mathrm{id}_2)(|\Omega\rangle \langle \Omega|), \tag{4}$$

where $|\Omega\rangle := \sum_{i=1}^{\dim(\mathcal{H}_2)} |ii\rangle \in \mathcal{H}_2 \otimes \mathcal{H}_2$, where each *i* labels an element of a fixed orthonormal basis of \mathcal{H}_2 .

In the following, we are dealing with up to four copies of the same Hilbert space. We fix some basis $\{|1\rangle, |2\rangle, \ldots, |d\rangle\}$ in all of them. All basis dependent definitions (like $|\Omega\rangle$, C_T and the transpose) are defined w.r.t this basis.

Exercise 2: Properties of C_T

1. Show that for $\rho \in \mathcal{B}(\mathcal{H}_2)$,

$$T(\rho) = \operatorname{tr}_2[(\mathbb{1}_1 \otimes \rho^T) C_T], \tag{5}$$

where tr₂ denotes the partial trace over the second system and ρ^T is the transpose of ρ .

2. Show that T is a quantum channel if and only if the following two relations hold:

$$C_T \ge 0, \quad \operatorname{tr}_1[C_T] = \mathbb{1}_2. \tag{6}$$

Conditions 2 already are constraints for an SDP. In order to formulate the whole problem as an SDP, we need to figure out how Choi matrices of channels of the form $id_A \otimes T$ look like. The problem with writing this down directly now is that the tensor factors are not in the most convenient order. Therefore, we introduce the flip operator

$$\mathbb{F} := \sum_{i,j} |ij\rangle \langle ji| \tag{7}$$

Exercise 3: Choi matrix $C_{\mathrm{id}_A\otimes T}$

Show that

$$(\mathbb{1} \otimes \mathbb{F} \otimes \mathbb{1})C_{\mathrm{id}_A \otimes T}(\mathbb{1} \otimes \mathbb{F} \otimes \mathbb{1}) = |\Omega\rangle \langle \Omega| \otimes C_T$$
(8)

Exercise 4: Objective function in terms of the Choi operator Show that

$$\langle \phi | (\mathrm{id}_A \otimes T)(\rho_{AB}) | \phi \rangle = \mathrm{tr}[(\mathbb{1} \otimes \mathbb{F} \otimes \mathbb{1})(|\phi\rangle \langle \phi | \otimes \rho_{AB}^T)(\mathbb{1} \otimes \mathbb{F} \otimes \mathbb{1}) | \Omega \rangle \langle \Omega | \otimes C_T]$$
(9)

Exercise 5: Formulation of the SDP

Argue that the following optimization problem is an SDP, whose solution is equal to (3) and that the optimal C is the Choi operator of T_{opt} .

maximize:
$$\operatorname{tr}[X(|\Omega\rangle \langle \Omega| \otimes C)]$$

subject to: $C \ge 0$
 $\operatorname{tr}_1[C] = \mathbb{1}_2,$

where $X := (\mathbb{1} \otimes \mathbb{F} \otimes \mathbb{1})(|\phi\rangle \langle \phi| \otimes \rho_{AB}^T)(\mathbb{1} \otimes \mathbb{F} \otimes \mathbb{1}).$