Sheet 4

20. May 2022

Approximating pure bipartite states by local operations

Let $\mathcal{H}_{A B}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ be a composite Hilbert space, where $\operatorname{dim}\left(\mathcal{H}_{A}\right)=\operatorname{dim}\left(\mathcal{H}_{B}\right)=: d$ and consider a mixed density matrix $\rho_{A B}$ on it. Assume that you can perform operations of the following form on the mixed state:

$$
\begin{equation*}
\left(\mathrm{id}_{A} \otimes T\right)\left(\rho_{A B}\right), \tag{1}
\end{equation*}
$$

where $T: \mathcal{B}\left(\mathcal{H}_{B}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{B}\right)$ is a arbitrary quantum channel (that is, T is a completely positive and trace-preserving linear map). Your task now is to choose T such that the resulting density matrix is as similar as possible to $|\phi\rangle\langle\phi|$, for a certain pure state $|\phi\rangle \in \mathcal{H}_{A B}$. For our measure of similarity, we choose the Fidelity of $\left(\operatorname{id}_{A} \otimes T\right)\left(\rho_{A B}\right)$ and $|\phi\rangle$, which is given by

$$
\begin{equation*}
\langle\phi|\left(\operatorname{id}_{A} \otimes T\right)\left(\rho_{A B}\right)|\phi\rangle . \tag{2}
\end{equation*}
$$

Hence the optimal value of our problem is given by

$$
\begin{equation*}
\sup _{T \text { channel }}\langle\psi|\left(\operatorname{id}_{A} \otimes T\right)\left(\rho_{A B}\right)|\psi\rangle \text {. } \tag{3}
\end{equation*}
$$

Exercise 1: Well defined?

Show that the supremum in (3) is attained by some channel $T_{\text {opt }}$.
In the following we will reformulate this problem as an SDP. To do so, we use the Choi-Jamiolkowski isomorphism.

Definition. 0.1. The Choi matrix $C_{T} \in \mathcal{B}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$ of a linear map $T: \mathcal{B}\left(\mathcal{H}_{2}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{1}\right)$ is given by

$$
\begin{equation*}
C_{T}:=\left(T \otimes \mathrm{id}_{2}\right)(|\Omega\rangle\langle\Omega|), \tag{4}
\end{equation*}
$$

where $|\Omega\rangle:=\sum_{i=1}^{\operatorname{dim}\left(\mathcal{H}_{2}\right)}|i i\rangle \in \mathcal{H}_{2} \otimes \mathcal{H}_{2}$, where each i labels an element of a fixed orthonormal basis of \mathcal{H}_{2}.

In the following, we are dealing with up to four copies of the same Hilbert space. We fix some basis $\{|1\rangle,|2\rangle, \ldots,|d\rangle\}$ in all of them. All basis dependent definitions (like $|\Omega\rangle, C_{T}$ and the transpose) are defined w.r.t this basis.

Exercise 2: Properties of C_{T}

1. Show that for $\rho \in \mathcal{B}\left(\mathcal{H}_{2}\right)$,

$$
\begin{equation*}
T(\rho)=\operatorname{tr}_{2}\left[\left(\mathbb{1}_{1} \otimes \rho^{T}\right) C_{T}\right], \tag{5}
\end{equation*}
$$

where tr_{2} denotes the partial trace over the second system and ρ^{T} is the transpose of ρ.
2. Show that T is a quantum channel if and only if the following two relations hold:

$$
\begin{equation*}
C_{T} \geq 0, \quad \operatorname{tr}_{1}\left[C_{T}\right]=\mathbb{1}_{2} . \tag{6}
\end{equation*}
$$

Conditions 2 already are constraints for an SDP. In order to formulate the whole problem as an SDP, we need to figure out how Choi matrices of channels of the form $\mathrm{id}_{A} \otimes T$ look like. The problem with writing this down directly now is that the tensor factors are not in the most convenient order. Therefore, we introduce the flip operator

$$
\begin{equation*}
\mathbb{F}:=\sum_{i, j}|i j\rangle\langle j i| \tag{7}
\end{equation*}
$$

Exercise 3: Choi matrix $C_{\mathrm{id}_{A} \otimes T}$

Show that

$$
\begin{equation*}
(\mathbb{1} \otimes \mathbb{F} \otimes \mathbb{1}) C_{\operatorname{id}_{A} \otimes T}(\mathbb{1} \otimes \mathbb{F} \otimes \mathbb{1})=|\Omega\rangle\langle\Omega| \otimes C_{T} \tag{8}
\end{equation*}
$$

Exercise 4: Objective function in terms of the Choi operator

Show that

$$
\begin{equation*}
\langle\phi|\left(\operatorname{id}_{A} \otimes T\right)\left(\rho_{A B}\right)|\phi\rangle=\operatorname{tr}\left[(\mathbb{1} \otimes \mathbb{F} \otimes \mathbb{1})\left(|\phi\rangle\langle\phi| \otimes \rho_{A B}^{T}\right)(\mathbb{1} \otimes \mathbb{F} \otimes \mathbb{1})|\Omega\rangle\langle\Omega| \otimes C_{T}\right] \tag{9}
\end{equation*}
$$

Exercise 5: Formulation of the SDP

Argue that the following optimization problem is an SDP, whose solution is equal to (3) and that the optimal C is the Choi operator of $T_{o p t}$.

$$
\begin{aligned}
\operatorname{maximize}: & \operatorname{tr}[X(|\Omega\rangle\langle\Omega| \otimes C)] \\
\text { subject to: } & C \geq 0 \\
& \operatorname{tr}_{1}[C]=\mathbb{1}_{2},
\end{aligned}
$$

where $X:=(\mathbb{1} \otimes \mathbb{F} \otimes \mathbb{1})\left(|\phi\rangle\langle\phi| \otimes \rho_{A B}^{T}\right)(\mathbb{1} \otimes \mathbb{F} \otimes \mathbb{1})$.

