Quantum channels

Exercise 1: Representation of quantum channels

Consider a single qubit channel which acts in the following way: With probability $p=1 / 2$, it applies an X gate to the qubit (i.e. $X \rho X^{*}$), and with probability $p=1 / 2$, it performs a measurement on the Z basis, after which:

- If the outcome of the measurement is +1 , then it replaces the qubit with $|0\rangle$.
- If the outcome of the measurement is -1 , then it replaces the qubit with $\mathbb{I} / 2$.

Then, the following problems are posed:

1. Find a set of Kraus operators for this channel.
2. Find a Stinespring's dilation of this channel.
3. Find the Choi state corresponding to this channel.

Exercise 2: Quantum channel, Kraus representation and Lindbladian

Consider a quantum channel \mathcal{E} on a qubit which measures the operator X on the qubit and:

- If the outcome of the measurement is +1 , the qubit is erased and replaced with the state $\frac{1+\varepsilon_{+}}{2}|0\rangle\langle 0|+\frac{1-\varepsilon_{+}}{2}|1\rangle\langle 1|$.
- If the outcome of the measurement is +1 , the qubit is erased and replaced with the state $\frac{1+\varepsilon_{-}}{2}|0\rangle\langle 0|+\frac{1-\varepsilon_{-}}{2}|1\rangle\langle 1|$.

In both cases, $\varepsilon_{ \pm} \in(-1,1)$.

1. Write an expression for $\mathcal{E}(\rho)$ in terms of ρ, where ρ is the single qubit state on which the map is applied. Show that the map is trace-preserving and positive.
2. Write down the Kraus representation for this channel.
3. Calculate the fixed points of this channel, i.e. the states ρ for which $\mathcal{E}(\rho)=\rho$.
4. Solve the master equation corresponding to the purely dissipative Lindbladian (with no Hamiltonian) with the jump operators $|0\rangle\langle+|,|1\rangle\langle-|$ and show that $\mathcal{E}=\lim _{t \rightarrow \infty} \mathrm{e}^{\mathcal{L} t}$.

Exercise 3: Pure and product states

Let ρ be a density matrix for two qubits A and B such that the reduced state on qubit A is pure, i.e. $\operatorname{tr}_{B}(\rho)=|\psi\rangle\langle\psi|$ for some $|\psi\rangle$. Show that

1. If ρ is a pure state, then the reduced state on the qubit B is also pure.
2. ρ is a product state.

Exercise 4: PPT criterion

Consider the following state

$$
\rho_{p}=p\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|+(1-p) \frac{I}{4}
$$

where $p \in(0,1), I$ is the identity operator and

$$
\left|\Psi^{-}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}
$$

1. Show that ρ_{p} is positive semidefinite for every $p \in(0,1)$.
2. Compute the partial transpose with respect to the second qubit of ρ_{p}.
3. Using the PPT criterion, calculate the range of p for which the state ρ_{p} is separable and when it is entangled.

Exercise 5: Transposition map

Consider the transposition map over $\mathbb{C}^{d \times d}$. Show that it is positive, but not completely positive.

