Quantum Hypothesis Testing

Exercise 1: Optimality under noise

Let $\rho_{1}, \ldots, \rho_{n}$ be density operators on \mathbb{C}^{d} with associated a priori probabilities $p_{x}=1 / n$ for every $x=1, \ldots, n$ and $M=\left(M_{1}, \ldots, M_{n}\right)$ a corresponding optimal measurement. Show that, for every $\lambda \in[0,1]$, a modified POVM M^{\prime} is still optimal if we replace ρ_{x} by $\lambda \rho_{x}+(1-\lambda) \mathbf{1} / d$ with the same a priori proabilities.

Exercise 2: Distinguishing quantum states

Here we investigate the use of quantum hypothesis testing for distinguishing quantum states.

1. Given the two states $|0\rangle$ and $|+\rangle$, what is the optimal measurement for distinguishing them? Compute the corresponding probability.
2. Now change the second state by $p|0\rangle\langle 0|+(1-p)|1\rangle\langle 1|$ with $p \in(0,1)$. How does the probability depend on p ?
3. In 1., consider now several copies of the states, i.e. $|0000\rangle$ and $|++++\rangle$, for instance. How does the probability of discriminating the states successfully increase with the number of copies?

Exercise 3: Fidelity

The fidelity of two mixed states $\rho_{A}, \sigma_{A} \in \mathcal{S}\left(\mathcal{H}_{A}\right)$ can be defined by means of their purifications, namely

$$
F\left(\rho_{A}, \sigma_{A}\right):=\max _{|\psi\rangle_{A B},|\phi\rangle_{A B}}\left|\langle\psi \mid \phi\rangle_{A B}\right|^{2},
$$

where $|\psi\rangle_{A B}$ and $|\phi\rangle_{A B}$ are purifications of ρ_{A} and σ_{A}, respectively. Show that the following properties hold:

1. $F\left(\rho_{A}, \sigma_{A}\right)=1$ if, and only if, $\rho_{A}=\sigma_{A}$.
2. $F\left(\rho_{A}, \sigma_{A}\right)=0$ if, and only if, $\rho_{A} \sigma_{A}=\sigma_{A} \rho_{A}=0$.
3. For any density operator $\tau \in \mathcal{S}\left(\mathcal{H}_{C}\right)$, we have $F\left(\rho_{A} \otimes \tau, \sigma_{A} \otimes \tau\right)=F\left(\rho_{A}, \sigma_{A}\right)$.

Exercise 4: Chernoff distance and fidelity

Let ρ, σ be two density matrices and denote $Q(s):=\operatorname{tr}\left[\rho^{s} \sigma^{1-s}\right]$ for $s \in[0,1]$, which defines the Chernoff distance by taking

$$
-\inf _{s \in[0,1]} \log (Q(s))
$$

1. Assuming that ρ and σ are pure states, what is the relation between $Q(s)$ and the fidelity $F(\rho, \sigma)$? Remember that, in general,

$$
F(\rho, \sigma):=\left(\operatorname{tr}\left[\left(\rho^{1 / 2} \sigma \rho^{1 / 2}\right)^{1 / 2}\right]\right)^{2}
$$

2. Show that

$$
\inf _{s \in[0,1]} Q(s) \leq F(\rho, \sigma)^{1 / 2}
$$

3. Show that for every $s \in[0,1]$,

$$
F(\rho, \sigma) \leq Q(s)
$$

Hint: It might help you to write

$$
\rho^{1 / 2} \sigma^{1 / 2}=\rho^{\frac{1-s}{2}}\left(\rho^{\frac{s}{2}} \sigma^{\frac{1-s}{2}}\right) \sigma^{\frac{s}{2}}
$$

and use that $\|A B\|_{r} \leq\|A\|_{p}\|B\|_{q}$ with $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$.

