Mathematical Statistical Physics: Assignment 1

Problem 1: In high dimension, oranges are mostly peel. (hand in, 26 points)
Show that for all $\varepsilon, \delta \in(0,1)$ there is $d_{0} \in \mathbb{N}$ such that, for all $d>d_{0}$, a fraction of at least $1-\varepsilon$ of the volume of the unit ball in \mathbb{R}^{d} is contained in the shell of thickness δ underneath the surface.

Problem 2: Normalization of the Gaussian (don't hand in)
Show that for all $\mu \in \mathbb{R}$ and $\sigma>0$,

$$
\int_{-\infty}^{+\infty} d x \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)=1
$$

Problem 3: Gamma function (hand in, 24 points)
Show that the Gamma function, defined on $(0, \infty)$ by $\Gamma(\alpha)=\int_{0}^{\infty} d t t^{\alpha-1} e^{-t}$, has the following properties.
(a) $\Gamma(\alpha+1)=\alpha \Gamma(\alpha)$.
(b) $\Gamma(1)=1$. Thus, $\Gamma(n)=(n-1)$! for $n \in \mathbb{N}$.
(c) $\Gamma(1 / 2)=\sqrt{\pi}$ (Hint: substitute $s=\sqrt{t}$). Thus, $\Gamma(n+1 / 2)=\frac{(2 n)!\sqrt{\pi}}{4^{n} n!}$.

Problem 4: Spherical coordinates in \mathbb{R}^{d} (hand in, 50 points)
They are defined by

$$
\begin{align*}
x_{1} & =r \cos \phi_{1} \\
x_{2} & =r \sin \phi_{1} \cos \phi_{2} \\
x_{3} & =r \sin \phi_{1} \sin \phi_{2} \cos \phi_{3} \\
& \ldots \tag{1}\\
x_{d-1} & =r \sin \phi_{1} \cdots \sin \phi_{d-2} \cos \phi_{d-1} \\
x_{d} & =r \sin \phi_{1} \cdots \sin \phi_{d-1}
\end{align*}
$$

with $r \in[0, \infty), \phi_{1}, \ldots, \phi_{d-2} \in[0, \pi]$, and $\phi_{d-1} \in[0,2 \pi)$.
(a) Show that for fixed $r>0$, the image of the ϕ coordinates is the sphere of radius r, $\mathbb{S}_{r}^{d-1}=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: x_{1}^{2}+\ldots+x_{d}^{2}=r^{2}\right\}$.
(b) Show that the Jacobian determinant of the coordinate transformation (1) is

$$
J=r^{d-1} \sin ^{d-2} \phi_{1} \sin ^{d-3} \phi_{2} \cdots \sin \phi_{d-2} .
$$

(In other words, the ($d-1$-dimensional) area $d A$ of a surface element is

$$
d A=r^{d-1} \sin ^{d-2} \phi_{1} \sin ^{d-3} \phi_{2} \cdots \sin \phi_{d-2} d \phi_{1} d \phi_{2} \cdots d \phi_{d-1},
$$

and the (d-dimensional) volume of a volume element is $d V=d r d A$.)
(c) Show that the area of \mathbb{S}_{r}^{d-1} is given by

$$
\begin{equation*}
A=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)} r^{d-1} \tag{2}
\end{equation*}
$$

where Γ is the Gamma function, and the volume of the ball $B_{r} \subset \mathbb{R}^{d}$ by

$$
\begin{equation*}
V=\frac{\pi^{d / 2}}{\Gamma(1+d / 2)} r^{d} \tag{3}
\end{equation*}
$$

Hint: Use without proof that $\int_{0}^{\pi} d \phi \sin ^{k} \phi=\sqrt{\pi} \Gamma\left(\frac{k+1}{2}\right) / \Gamma\left(\frac{k+2}{2}\right)$.

Problem 5: Non-global solution (don't hand in)
Verify that the trajectory (2.10) in the lecture notes is a solution of the equation of motion (2.1).

Problem 6: Variance of a random variable (don't hand in)
Let $\mathbb{E} X$ denote the expectation value of the real random variable X. The variance of X is defined as $\operatorname{Var} X=\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right]$. Show that $\operatorname{Var} X=\mathbb{E}\left(X^{2}\right)-(\mathbb{E} X)^{2}$.

Hand in: By 8:15am on Tuesday, April 26, 2022 via urm.math. uni-tuebingen.de

