MATHEMATICAL STATISTICAL PHYSICS: ASSIGNMENT 1

Problem 1: In high dimension, oranges are mostly peel. (hand in, 26 points) Show that for all $\varepsilon, \delta \in (0, 1)$ there is $d_0 \in \mathbb{N}$ such that, for all $d > d_0$, a fraction of at least $1 - \varepsilon$ of the volume of the unit ball in \mathbb{R}^d is contained in the shell of thickness δ underneath the surface.

Problem 2: Normalization of the Gaussian (don't hand in) Show that for all $\mu \in \mathbb{R}$ and $\sigma > 0$,

$$\int_{-\infty}^{+\infty} dx \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) = 1.$$

Problem 3: Gamma function (hand in, 24 points)

Show that the Gamma function, defined on $(0,\infty)$ by $\Gamma(\alpha) = \int_0^\infty dt t^{\alpha-1} e^{-t}$, has the following properties.

(a) $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$.

(b) $\Gamma(1) = 1$. Thus, $\Gamma(n) = (n-1)!$ for $n \in \mathbb{N}$.

(c) $\Gamma(1/2) = \sqrt{\pi}$ (Hint: substitute $s = \sqrt{t}$). Thus, $\Gamma(n + 1/2) = \frac{(2n)!\sqrt{\pi}}{4^n n!}$.

Problem 4: Spherical coordinates in \mathbb{R}^d (hand in, 50 points) They are defined by

$$x_{1} = r \cos \phi_{1}$$

$$x_{2} = r \sin \phi_{1} \cos \phi_{2}$$

$$x_{3} = r \sin \phi_{1} \sin \phi_{2} \cos \phi_{3}$$

$$\dots$$

$$x_{d-1} = r \sin \phi_{1} \cdots \sin \phi_{d-2} \cos \phi_{d-1}$$

$$x_{d} = r \sin \phi_{1} \cdots \sin \phi_{d-1}$$
(1)

with $r \in [0, \infty)$, $\phi_1, \ldots, \phi_{d-2} \in [0, \pi]$, and $\phi_{d-1} \in [0, 2\pi)$.

(a) Show that for fixed r > 0, the image of the ϕ coordinates is the sphere of radius r, $\mathbb{S}_r^{d-1} = \{(x_1, \ldots, x_d) \in \mathbb{R}^d : x_1^2 + \ldots + x_d^2 = r^2\}.$

(b) Show that the Jacobian determinant of the coordinate transformation (1) is

$$J = r^{d-1} \sin^{d-2} \phi_1 \sin^{d-3} \phi_2 \cdots \sin \phi_{d-2} \, .$$

(In other words, the (d - 1-dimensional) area dA of a surface element is

$$dA = r^{d-1} \sin^{d-2} \phi_1 \sin^{d-3} \phi_2 \cdots \sin \phi_{d-2} \, d\phi_1 \, d\phi_2 \cdots d\phi_{d-1} \, ,$$

and the (d-dimensional) volume of a volume element is $dV = dr \, dA$.) (c) Show that the area of \mathbb{S}_r^{d-1} is given by

$$A = \frac{2\pi^{d/2}}{\Gamma(d/2)} r^{d-1},$$
(2)

where Γ is the Gamma function, and the volume of the ball $B_r \subset \mathbb{R}^d$ by

$$V = \frac{\pi^{d/2}}{\Gamma(1+d/2)} r^d \,. \tag{3}$$

Hint: Use without proof that $\int_0^{\pi} d\phi \sin^k \phi = \sqrt{\pi} \, \Gamma\left(\frac{k+1}{2}\right) / \Gamma\left(\frac{k+2}{2}\right).$

Problem 5: Non-global solution (don't hand in) Verify that the trajectory (2.10) in the lecture notes is a solution of the equation of motion (2.1).

Problem 6: Variance of a random variable (don't hand in) Let $\mathbb{E}X$ denote the expectation value of the real random variable X. The variance of X is defined as $\operatorname{Var} X = \mathbb{E}[(X - \mathbb{E}X)^2]$. Show that $\operatorname{Var} X = \mathbb{E}(X^2) - (\mathbb{E}X)^2$.

Hand in: By 8:15am on Tuesday, April 26, 2022 via urm.math.uni-tuebingen.de