## Mathematical Statistical Physics: Assignment 3

Problem 12: Normalizing factor of the Gaussian in d dimensions (hand in, 20 points) Determine the normalizing factor $\mathscr{N}$ in the expression

$$
\rho(\boldsymbol{x})=\mathscr{N} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} C^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)
$$

for the density of $\mathcal{N}^{d}(\boldsymbol{\mu}, C)$, the Gaussian distribution in $\mathbb{R}^{d}$ with mean $\boldsymbol{\mu}$ and positive definite, symmetric covariance matrix $C$. Express $\mathscr{N}$ in terms of $\operatorname{det} C$. Use the answer for $d=1$ without proof.

Problem 13: Speeds of molecules (hand in, 20 points)
(a) Determine the most probable value $v_{\text {max }}$ of the speed $v=|\boldsymbol{v}|$ according to the Maxwellian distribution

$$
\rho(\boldsymbol{v})=\mathscr{N} \exp \left(-\frac{m|\boldsymbol{v}|^{2}}{2 k T}\right),
$$

with given $m$ and $T$. (Hint: The distribution density $\rho_{v}$ of $v$ is not $\mathscr{N} \exp \left(-m v^{2} / 2 k T\right)$. Why not?)
(b) Is $v_{\text {max }}$ greater or less than $\sqrt{\mathbb{E}\left(\boldsymbol{v}^{2}\right)}$ ?
(c) Determine $v_{\max }$ for $N_{2}$, the main constituent of air with $m=4.6 \cdot 10^{-26} \mathrm{~kg}$, at an absolute temperature of $T=300$ Kelvin.

Problem 14: Belt theorem (hand in, 30 points)
Show that for every $\varepsilon, \delta \in(0,1)$ there is $d_{0} \in \mathbb{N}$ such that, for all $d>d_{0}$, a fraction of at least $1-\varepsilon$ of the surface area of the unit sphere in $\mathbb{R}^{d}$ lies within a belt of width $2 \delta$ around the equator, $\left\{\boldsymbol{x} \in \mathbb{R}^{d}:-\delta<x_{1}<\delta,|\boldsymbol{x}|=1\right\}$. ("In high dimension, most points on the sphere are near the equator.")

Instructions: Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{d}\right)$ be a random, uniformly distributed point on $\mathbb{S}_{1}^{d-1}$. Use symmetry to compute the expectation and variance of $X_{1}$. Then use the Chebyshev inequality to bound $\mathbb{P}\left(-\delta<X_{1}<\delta\right)$.

Problem 15: Marginal of the uniform distribution on the sphere (hand in, 30 points) Let $u_{R}^{d-1}$ be the uniform probability measure on the sphere $\mathbb{S}_{R}^{d-1}$ of radius $R>0$ in $\mathbb{R}^{d}$, and let $\left(X_{1}, \ldots, X_{d}\right) \sim u_{R}^{d-1}$. Show that the marginal distribution of $X_{1}, \ldots, X_{k}, k<d$, has density given by

$$
\begin{equation*}
\rho_{k, d, R}(\boldsymbol{x})=\frac{A_{d-k}}{A_{d} R^{d-2}} 1_{\boldsymbol{x}^{2} \leq R^{2}}\left(R^{2}-\boldsymbol{x}^{2}\right)^{(d-k) / 2-1} \tag{1}
\end{equation*}
$$

with $A_{d}$ the area of $\mathbb{S}_{1}^{d-1}$.

Instructions: The marginal $f_{k}\left(x_{1}, \ldots, x_{k}\right)$ can also be defined for a non-normalized density function $f\left(x_{1}, \ldots, x_{d}\right)$,

$$
\begin{equation*}
f_{k}\left(x_{1}, \ldots, x_{k}\right)=\int d x_{k+1} \cdots d x_{d} f\left(x_{1}, \ldots, x_{d}\right) \tag{2}
\end{equation*}
$$

Let $\mathbb{B}_{r}^{d}$ denote the ball in $\mathbb{R}^{d}$ of radius $r$ around the origin. Use without proof that for $f=1_{\mathbb{P}_{R+\Delta R}^{d}}-1_{\mathbb{B}_{R}^{d}}$,

$$
\begin{equation*}
A_{d} R^{d-1} \rho_{k, d, R}(\boldsymbol{x})=\lim _{\Delta R \rightarrow 0} f_{k}(\boldsymbol{x}) / \Delta R . \tag{3}
\end{equation*}
$$

Conclude that, for $\boldsymbol{x}^{2}<R^{2}$,

$$
\begin{equation*}
\rho_{k, d, R}(\boldsymbol{x})=\frac{1}{A_{d} R^{d-1}} \frac{\partial}{\partial R} \operatorname{vol}_{d-k}\left\{\boldsymbol{y} \in \mathbb{R}^{d-k}: \boldsymbol{x}^{2}+\boldsymbol{y}^{2} \leq R^{2}\right\} . \tag{4}
\end{equation*}
$$

Hand in: By 8:15am on Tuesday, May 10, 2022 via urm.math.uni-tuebingen.de

