MATHEMATICAL STATISTICAL PHYSICS: ASSIGNMENT 6

Problem 27: Refrigerator (don't hand in)

Use the second law of thermodynamics to show that a refrigerator necessarily consumes energy rather than generating energy. (We might have thought that the energy removed from the content of the refrigerator is available afterwards.)

Instructions. Let T_{in} be the temperature inside the refrigerator, T_{out} the one outside, $Q_{\rm in}$ the heat energy inside, $Q_{\rm out}$ the one outside, and δW the usable energy provided by the refrigerator (negative if it consumes energy) while it adds the energy $\delta Q_{\rm in} < 0$ to the content and δQ_{out} to the outside. Use the Clausius relation $\delta S_i = \delta Q_i/T_i$, $i = \text{in}$, out to show that $\delta W < 0$.

Problem 28: *Entropy in thermal equilibrium* (hand in, 30 points) Compute the entropy $S(E, V, N)$ of the thermal equilibrium state of an ideal mono-atomic gas from Boltzmann's formula $S(\text{eq}) = k \log \Omega(E)$.

Instructions. We have already found the relations

$$
\text{vol}\,\Gamma_{\leq E} = \frac{1}{N!} V^N V_{3N} (2mE)^{3N/2} \tag{1}
$$

$$
V_d = \frac{\pi^{d/2}}{\Gamma(1+d/2)}\tag{2}
$$

$$
\Omega(E) = \frac{d}{dE} \operatorname{vol} \Gamma_{\leq E} \,. \tag{3}
$$

Use Stirling's formula

$$
\Gamma(x+1) = \sqrt{2\pi x} e^{-x} x^{x} (1 + o(1)) \quad \text{as } x \to \infty
$$
 (4)

and $n! = \Gamma(n+1)$. Set $E = Ne$ and $V = Nv$ with constants e, v, sort terms by orders $O(N \log N)$, $O(N)$, $O(\log N)$, ..., and give the leading order terms as the answer.

Problem 29: Concave function (hand in, 20 points) Verify that the function

$$
S(E, V, N) = kN \log \frac{V}{Nv_0} + \frac{3}{2}kN \log \frac{E}{Ne_0}
$$

is concave on $(0, \infty)^3$. Use without proof that a C^2 function is concave if and only if its Hessian is everywhere negative semi-definite. (Hint: The matrix is singular, and on a certain 2d subspace it is negative definite.)

Problem 30: Scattering cross section for billiard balls (hand in, 30 points)

When two billiard balls of radius a and momenta p_1, p_2 collide, the resulting (outgoing) momenta p'_1, p'_2 depend on the displacement vector $\omega = (q_2 - q_1)/2a \in \mathbb{S}^2_1$ at the time of the collision:

$$
\boldsymbol{p}'_1 = \boldsymbol{p}_1 - [(\boldsymbol{p}_1 - \boldsymbol{p}_2) \cdot \boldsymbol{\omega}]\boldsymbol{\omega}, \qquad \boldsymbol{p}'_2 = \boldsymbol{p}_2 + [(\boldsymbol{p}_1 - \boldsymbol{p}_2) \cdot \boldsymbol{\omega}]\boldsymbol{\omega}. \tag{5}
$$

We consider *random* collisions and want to characterize the probability distribution of p'_1, p'_2 for given p_1, p_2 by determining that of ω . To this end, we suppose that $p_2 = 0$ (as can be arranged via a Galilean transformation), $q_2 = 0$, and $p_1 = p_1 e_x$ (via translation and rotation). It is reasonable to assume that the y- and z-components of q_1 are uniformly distributed on the disc of radius 2a around the origin in the yz -plane (given that a collision occurs at all); the polar coordinates r and φ of (y, z) are called the collision parameters.

(a) Express q_1 and ω as functions of r and φ .

(b) Show that $\boldsymbol{\omega} = (\omega_x, \omega_y, \omega_z)$ has probability density proportional to $1_{\omega_x < 0} |\omega_x|$ relative to the uniform measure $u(d^2\omega)$ on the sphere.

(c) Explain why, for arbitrary p_1, p_2 , the probability distribution of ω is proportional to $1_{\boldsymbol{\omega}\cdot(\boldsymbol{p}_1-\boldsymbol{p}_2)<0}\left|\boldsymbol{\omega}\cdot(\boldsymbol{p}_1-\boldsymbol{p}_2)\right|d^2\boldsymbol{\omega}.$

Problem 31: Gibbs entropy (hand in, 20 points)

The Gibbs entropy of a probability density function ρ on phase space $\Gamma = \mathbb{R}^d$ is defined by

$$
S_{\text{Gibbs}}(\rho) = -k \int_{\Gamma} dx \, \rho(x) \, \log \rho(x) \tag{6}
$$

with the convention $0 \log 0 := 0$. Suppose $M : \mathbb{R}^d \to \mathbb{R}^d$ is a diffeomorphism with Jacobian determinant $|\det DM(x)| = 1$ at all $x \in \mathbb{R}^d$ (so M preserves volumes), and suppose that the point X_0 in \mathbb{R}^d is chosen randomly with (smooth) probability density $\rho_0 : \mathbb{R}^d \to [0, \infty)$. Use the transformation formula for integrals to show that

- (a) the random point $Y = M(X_0)$ has density $\rho_1(y) = \rho_0(M^{-1}(y))$.
- (b) $S_{\text{Gibbs}}(\rho_1) = S_{\text{Gibbs}}(\rho_0)$.

Remark. As a consequence, for a Hamiltonian system on \mathbb{R}^d such that for each $t \in \mathbb{R}$ the flow map T^t is a diffeomorphism $\mathbb{R}^d \to \mathbb{R}^d$, if ρ_t is the density of $X_t = T^t(X_0)$ then, since T^t has Jacobian determinant 1 (Liouville's theorem), the Gibbs entropy never changes with time.

Hand in: By 8:15am on Tuesday, May 31, 2022 via urm.math.uni-tuebingen.de