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Mathematical Statistical Physics: Assignment 9

Problem 40: Grand-canonical distribution as a marginal (hand in, 35 points)
We consider an ideal gas in a container Λ ⊂ R3 subdivided into a region ΛA and its
complement ΛB = Λ \ ΛA. There are no walls between ΛA and ΛB, so particles can pass
freely. We write A := ΛA × R3 and B := ΛB × R3 for the corresponding subsets of Γ1;
the total phase space is Γ = NΓ1; the phase space of system A is now a phase space of a
variable number of particles, ΓA = ∪Nn=0

nA. For x ∈ Γ let xA = x∩A and xB = x∩B, so
x = xA ∪ xB; correspondingly, Γ can be regarded as a subset of ΓA × ΓB. We have that
H(x1, . . . , xN) =

∑N
j=1H1(xj) and HA(x1, . . . , xn) =

∑n
j=1 H1(xj) for n = 0 . . . N . For

simplicity, we start from a canonical (rather than micro-canonical) distribution ρcan on
Γ, i.e., (ideal gas): N points in Γ1 are chosen i.i.d. according to the Maxwell-Boltzmann
distribution ρ1 = Z−1

1 e−βH1 . The marginal ρA of ρcan on ΓA ranges over different particle
numbers; so does Z−1

A e−βHA , but it is not the same distribution! Show that instead in the
limit Λ→∞, N →∞, ΛA fixed, H1 fixed, N

∫
A
ρ1 → c > 0 (with suitable constant c),

ρA(x1, . . . , xn) =
1

Z
exp
[
−β(HA(x1 . . . xn)− µn)

]
(1)

with suitable constant µ ∈ R. This is the grand-canonical distribution. (If we write phase
points in ΓA as ordered, then a further factor 1/n! appears in (1).)

Problem 41: The Kac ring model1 (hand in, 65 points)

This model is a toy version of the Boltzmann equa-
tion. Of N � 1 dots P1, . . . , PN along a circle,
L are marked with a cross; let Yk = −1 if Pk is
marked, otherwise Yk = 1. Between neighboring
points there is always a ball which is either black
(Xk = −1) or white (Xk = 1). In each time step,
every ball moves to the next site clockwise and
changes its color if it passes a cross. Initially, all
balls are black, while crosses are chosen randomly
with fixed density µ = L/N . We ask what the
distribution of colors is like after many steps.

The balls represent molecules, the color velocity
(which here does not affect the motion), collisions

1 Kac ring model

On a circle we consider n equidistant points P1, P2, . . . , PN , L of which are
marked (with a cross).

with each other are replaced by collisions with fixed obstacles (“scatterers”). The dynam-
ics is reversible in the sense that counterclockwise rotation will restore the initial state,
and a recurrence theorem holds (with the unrealistic trait that the recurrence time is the
same for all states): after 2N steps, every ball has passed every scatterer twice and thus
regained the original color, so the dynamics is 2N -periodic.

“Phase space” Γ corresponds to all Xk and Yk values, #Γ = 22N . The “micro-canonical”
distribution is uniform (1/number of phase points). The “equation of motion” reads

Xk(t) = Yk−1Xk−1(t− 1) (2)

1M. Kac: Some remarks on the use of probability in classical statistical mechanics. Acad. Roy. Belg.
Bull. Cl. Sci. (5) 42: 356–361 (1956)
G. A. Gottwald and M. Oliver: Boltzmann’s Dilemma: An Introduction to Statistical Mechanics via

the Kac Ring. SIAM Review 51: 613–635 (2009)



with solution
Xk(t) = Yk−1Yk−2 · · ·Yk−tXk−t(0) (3)

(with subtraction modulo N); the Yk are conserved. The macro variable is p = Nb/N (Nb

= number of black balls), coarse-grained with resolution ∆p; that is, for p ∈ ∆pN0,

Γν = Γp =
{

(X, Y ) ∈ Γ : Nb ∈
[
(p−∆p/2)N, (p+ ∆p/2)N

)}
. (4)

(a) Show that for S(p) = log #Γp,

lim
∆p→0

lim
N→∞

1

N
S(p) = log 2− p log p− (1− p) log(1− p) =: s(p) . (5)

(b) Show that Γ1/2 is a dominant macro state for fixed ∆p > 0 and sufficiently large N .

(c) Consider D(t) = Nb(t)−Nw(t) (Nw = number of white balls). Let Ñb be the number
of black balls that will change color in the next step. Explain why

D(t+ 1) = D(t) + 2(Ñw − Ñb) . (6)

(d) Without knowing the micro state, we cannot determine Ñb, so the macro evolution
equation (6) is “not autonomous.” However, for typical Y the hypothesis of molecular
chaos

Ñb(t) = µNb(t) , Ñw(t) = µNw(t) (7)

applies, stating that the balls are unrelated with the crosses. Assume (7) to find a dif-
ference equation that provides a closed evolution equation for D(t); it is the analog to
the Boltzmann equation. Find the general solution and verify that for 0 < µ < 1/2 the
solution converges monotonically to 0 (i.e., to the dominant macro state) as t→∞.

(e) Express p through D and show that the macro evolution of part (d) obeys an H-
theorem: s(p(t)) increases.  
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Fig. 3 The evolution of ∆(t) for an ensemble of M = 400 Kac rings with N = 500 sites which are
initially occupied by black balls over the full recurrence time t = 2N . Edges carry markers
with probability µ = 0.009.

The first equality is a consequence of the N -periodicity of the lattice, namely, that
mi = mN+i, which implies that m1 m2 · · ·m2N = 1. The second equality is due
again to the invariance of the average under an index shift. We may thus follow the
argument leading from (14) to (17) with 2N − t in place of t, to finally obtain

(19) 〈∆(t)〉 = (1 − 2 µ)2N−t ∆(0) .

As the exponent on the right-hand side is negative on the interval N ≤ t ≤ 2N , the
ensemble average 〈∆(t)〉 increases on this interval and, in particular, recurs to its
initial value for t = 2N . This behavior is called anti-Boltzmann.

Figure 3 shows a simulation of an ensemble of Kac rings. Clearly visible is the
recurrence at t = 2N . The sample mean compares well with the predicted ensemble
average; see (17) and (19). The theoretical predictions are not explicitly drawn, but
they would not visibly depart from the sample mean except near the half-recurrence
time t = N , when each individual trajectory either recurs or arrives at the negative
of its initial value. The half-recurrence time is also the time of maximal variance,
as we will discuss in section 5, so that the size of our sample is simply too small
to get a good experimental prediction of the mean. Figure 3 also shows that some
realizations have large departures from the mean while most stay close, at least for
times t % N . We shall make this observation more precise in section 6. Finally,
note that the expected number of markers per ring in Figure 3 is 4.5. Thus, with high
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Figure (for illustration only): Numerical simulation of D(t) for 400 realizations of Y with
µ = 0.009 on a Kac ring with N = 500 balls, initially all black, over a full period t = 2N .
Thick curve: D(t) averaged over the 400 runs. From Gottwald and Oliver.1

Hand in: By 8:15am on Tuesday, June 28, 2022 via urm.math.uni-tuebingen.de


