Mathematical Statistical Physics: Assignment 11

Problem 46: Complex Gaussian in d dimensions (hand in, 25 points)
The complex random variable X obeys the complex Gaussian distribution $\mathcal{N}_{\mathbb{C}}\left(z, \sigma^{2}\right)$ whenever $\operatorname{Re} X \sim \mathcal{N}\left(\operatorname{Re} z, \sigma^{2} / 2\right), \operatorname{Im} X \sim \mathcal{N}\left(\operatorname{Im} z, \sigma^{2} / 2\right)$, and $\operatorname{Re} X$ and $\operatorname{Im} X$ are independent. The Gaussian distribution $\mathcal{N}_{\mathbb{C}^{d}}\left(\psi_{0}, C\right)$ on \mathbb{C}^{d} has density of the form

$$
\begin{equation*}
f(\psi)=\mathscr{N} \exp \left(-\left\langle\psi-\psi_{0}\right| C^{-1}\left|\psi-\psi_{0}\right\rangle\right) \tag{1}
\end{equation*}
$$

where the complex $d \times d$ matrix C is self-adjoint and positive definite. Use what we know about the real Gaussian distribution to show for $\Psi \sim \mathcal{N}_{\mathbb{C}^{d}}\left(\psi_{0}, C\right)$ that
(a) $\mathscr{N}=\pi^{-d}(\operatorname{det} C)^{-1}$
(b) C is the complex covariance matrix, $C=\mathbb{E}\left|\Psi-\psi_{0}\right\rangle\left\langle\Psi-\psi_{0}\right|$ (hint: diagonalize)
(c) for every $\phi \in \mathbb{C}^{d}$ we have that $\langle\phi \mid \Psi\rangle$ obeys a complex Gaussian distribution.

Problem 47: Conditional wave function (hand in, 25 points)
For a given ONB $\left\{\phi_{q}\right\}$ of \mathscr{H}_{b} and $\psi \in \mathbb{S}\left(\mathscr{H}_{s} \otimes \mathscr{H}_{b}\right)$, the conditional wave function ψ_{s} is the random vector in $\mathbb{S}\left(\mathscr{H}_{s}\right)$ given by

$$
\psi_{s}=\mathscr{N}\left\langle\phi_{Q} \mid \psi\right\rangle_{b}
$$

with partial inner product only in b, normalizing factor \mathscr{N}, and random Q,

$$
\mathbb{P}(Q=q)=\left\|\left\langle\phi_{q} \mid \psi\right\rangle_{b}\right\|_{s}^{2} .
$$

Show that the density matrix of the distribution μ_{s} of ψ_{s} is exactly the reduced density matrix of $\psi, \rho_{\mu_{s}}=\rho_{s}^{\psi}$ with $\rho_{\mu_{s}}=\mathbb{E}\left|\psi_{s}\right\rangle\left\langle\psi_{s}\right|$ and $\rho_{s}^{\psi}=\operatorname{tr}_{b}|\psi\rangle\langle\psi|$.

Problem 48: Typicality of thermal equilibrium (hand in, 25 points)
Let $0<\varepsilon<\delta<1$. Let $\mathscr{H}_{\text {eq }}$ be a subspace of $\mathscr{H}_{\text {mc }}$ with $\operatorname{dim} \mathscr{H}_{\text {eq }} / \operatorname{dim} \mathscr{H}_{\text {mc }}=1-\varepsilon$, let $P_{\text {eq }}$ be the projection to $\mathscr{H}_{\text {eq }}$, and let $u_{\text {mc }}$ be the uniform distribution over $\mathbb{S}\left(\mathscr{H}_{\mathrm{mc}}\right)$. Show for the set

$$
G=\left\{\psi \in \mathbb{S}\left(\mathscr{H}_{\mathrm{mc}}\right):\langle\psi| P_{\mathrm{eq}}|\psi\rangle>1-\delta\right\}
$$

that

$$
u_{\mathrm{mc}}(G)>1-\frac{\varepsilon}{\delta} .
$$

(As a consequence, if $\varepsilon \ll \delta \ll 1$, most wave functions lie in the set G of "equilibrium states.")
Hint: Determine the average of $\langle\psi| P_{\text {eq }}|\psi\rangle$ on $\mathbb{S}\left(\mathscr{H}_{\mathrm{mc}}\right)$. If a function $f \leq 1$ has average near 1 , why does it have to be close to 1 at most points?

Problem 49: Eigenfunctions in equilibrium (hand in, 25 points)
Show that most eigenvectors of H in $\mathscr{H}_{\text {mc }}$ (in fact at least the fraction $1-\varepsilon / \delta$) lie in the set G from Problem 48. (Actually, that is true of every ONB. Hint: Proceed analogously to Problem 48.)

Hand in: By 8:15am on Tuesday, July 12, 2022 via urm.math.uni-tuebingen.de

