Practice Exam Math. Stat. Phys.

Instructions:

- These problems are similar in style to the exam problems. Don't hand them in, they will not be graded.
- The material covered by the exam comprises Sections 1-11.3 of the lecture notes and all homework assignments.
- The exam takes 90 minutes. It takes place on Thursday July 21, 2022, at 8:20-9:50 am in room N14.
- During the exam, it is not allowed to use books, electronic devices, or notes from before the exam.

Problem 1: (10 points) State Liouville's theorem.

Problem 2: (10 points) State the definition of ergodicity or an equivalent condition.
Problem 3: (10 points) Explain what kind of statement a "validity theorem" of the Boltzmann equation is.

Problem 4: (10 points) Explain Zermelo's "recurrence" objection to any attempted derivation of the second law from mechanics. (No need to answer the objection.)

Problem 5: (12 points) Consider a random point $\boldsymbol{X}=\left(X_{1}, \ldots, X_{d}\right)$ with uniform distribution u_{R} over the sphere \mathbb{S}_{R}^{d-1} of radius $R=\sqrt{d}$ in \mathbb{R}^{d}. State mathematically what is meant by saying that
(a) "the marginal of u_{R} is Gaussian for large d ";
(b) "the empirical distribution of X_{1}, \ldots, X_{d} is typically Gaussian for large d."

Problem 6: (10 points) The integral

$$
\begin{equation*}
\mathscr{I}:=\int_{\mathbb{R}^{d}} d^{d} \boldsymbol{x} e^{-\boldsymbol{x}^{2}} \tag{1}
\end{equation*}
$$

can be computed in two ways: as a product of d 1-dimensional integrals (whose values we know), or in spherical coordinates (where the angle integrals yield the area A_{d} of \mathbb{S}_{1}^{d-1}). Exploit this to show that

$$
\begin{equation*}
A_{d}=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)} \tag{2}
\end{equation*}
$$

Problem 7: (14 points) Use the Poincaré recurrence theorem to show that for the discretetime dynamical system on the unit circle $\mathbb{S}_{1}^{1}=\{z \in \mathbb{C}:|z|=1\}$ given by $T z=e^{i \alpha} z$, the set $\left\{T^{n} 1: n \in \mathbb{N}\right\}$ is dense on the circle if α / π is irrational.

Problem 8: (12 points) We want to show that P_{+}defined by

$$
\begin{equation*}
P_{+} \psi\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{N}\right)=\frac{1}{N!} \sum_{\sigma \in S_{N}} \psi\left(\boldsymbol{q}_{\sigma(1)}, \ldots, \boldsymbol{q}_{\sigma(N)}\right) \tag{3}
\end{equation*}
$$

is the orthogonal projection to the subspace of symmetric (bosonic) functions in $\mathscr{H}=$ $L^{2}\left(\mathbb{R}^{3 N}\right)$. Proceed as follows:
(a) $P_{+} \psi$ is a symmetric function.
(b) If ψ is already symmetric, then $P_{+} \psi=\psi$.
(c) $P_{+}^{2}=P_{+}$
(d) $P_{+}: \mathscr{H} \rightarrow \mathscr{H}$ is self-adjoint.

Problem 9: (12 points) Consider the quantum system consisting of N non-interacting spins, $\mathscr{H}=\left(\mathbb{C}^{2}\right)^{\otimes N}, H=\sum_{i=1}^{N} I \otimes \cdots \otimes I \otimes H_{i} \otimes I \otimes \cdots \otimes I$ with H_{i} in the i-th place given by

$$
H_{i}=\left(\begin{array}{cc}
1 / \sqrt{N} & 0 \\
0 & -1 / \sqrt{N}
\end{array}\right) .
$$

Find the density of states $\Omega(E)$ in the limit $N \rightarrow \infty$.

