Summer Semester 2023

Sheet 10

Exercise 1 (Bogoliubov transformations)

Let \mathfrak{h} be a Hilbert space.

(a) Let U be a bounded linear operator on \mathfrak{h} and V a bounded antilinear operator on \mathfrak{h} such that

$$V^*U + U^*V = 0 = UV^* + VU^*,$$

 $U^*U + V^*V = \text{Id} = UU^* + VV^*.$

Show that there exists a unique *-automorphism α of CAR(\mathfrak{h}) such that

$$\alpha(a(f)) = a(Uf) + a^*(Vf) \qquad \text{for all } f \in \mathfrak{h}.$$

(b) Let T be an invertible operator on \mathfrak{h} such that $\operatorname{Im} \langle Tf, Tg \rangle = \operatorname{Im} \langle f, g \rangle$. Show that there exists a unique *-automorphism α of CCR(\mathfrak{h}) such that

$$\alpha(W(f)) = W(Tf) \qquad \text{for all } f \in \mathfrak{h}.$$

Exercise 2 (Separability of CAR/CCR)

- (a) Show that $CCR(\mathfrak{h})$ is not separable if $\mathfrak{h} \neq \{0\}$. Hint: Make a proof by contradiction and use that ||W(f) 1|| = 2 for $f \neq 0$.
- (b) Show that $CAR(\mathfrak{h})$ for some inner product space \mathfrak{h} is separable if and only if \mathfrak{h} is separable.

Exercise 3 (Universal C*-algebras)

- (a) Let $X = \{x\}$ and $R = (x = x^*, ||x|| \le 1)$. Show that $C^*(X|R) \cong C_0([-1, 1] \setminus \{0\})$.
- (b) Show that, for $\theta \in \mathbb{R}$, the so-called non-commutative torus $A_{\theta} = C^*(\{u, v\}|uu^* = u^*u = 1, uv = e^{2i\pi\theta}vu\}$ exists and is non-trivial. Hint: Consider on $\mathcal{L}(L^2(\mathbb{S}^1))$ the operators

$$U(f)(z) = zf(z), \qquad V(f)(z) = f(ze^{-2\pi i\theta}).$$

Exercise 4 (Fock representation is regular)

Let $\mathfrak{h} \neq \{0\}$ be an inner product space.

- (a) Show that, for $f \neq 0$, $\mathbb{R} \to CCR(\mathfrak{h})$, $t \mapsto W(tf)$ is not continuous with respect to the norm topology in $CCR(\mathfrak{h})$.
- (b) Show that, for all $f \in \mathfrak{h}, \mathbb{R} \to \operatorname{CCR}_F(\mathfrak{h}), t \mapsto W(tf)$ is continuous with respect to the strong operator topology.

Due Wednesday July 12, 2023 in the lecture or via e-mail