Summer Semester 2023

Exercise 1

Show that each proper ideal in the algebra of the matrices $\mathbb{C}^{d \times d}$ is of the form $\{0\}$.

Exercise 2

Let X be a compact Hausdorff space. Show that the map

$$\delta \colon X \to \widehat{C(X)}, \quad x \mapsto \delta_x,$$

with $\delta_x(f) := f(x)$, is a homeomorphism. Conclude that the Geldfand transformation acts under this isomorphism as the identity on C(X).

Exercise 3

Consider $\ell^1(\mathbb{Z})$ with the convolution and $\|\cdot\|_1$ as Banach algebra.

(a) Show that each $z \in \mathbb{S} \subseteq \mathbb{C}$ defines an element $\chi_z \in \widehat{\ell^1(\mathbb{Z})}$ given by

$$\chi_z(f) := \widehat{f}(z) := \sum_{n \in \mathbb{Z}} f(n) z^n,$$

and the map $\mathbb{S} \to \widehat{\ell^1(\mathbb{Z})}, \ z \mapsto \chi_z$ is a homeomorphism.

- (b) Prove that $f \in \ell^1(\mathbb{Z})$ is invertible if and only if $\widehat{f}(z) \neq 0$ for all $z \in \mathbb{S}$.
- (c) Prove that $\sigma(f) = \widehat{f}(\mathbb{S})$ for all $f \in \ell^1(\mathbb{Z})$.

Exercise 4

Let A be a C^* -algebra.

- (a) Let $a, b, u \in A$ such that u is unitary and $b = u^* a u$. Show that $\sigma(a) = \sigma(b)$.
- (b) Let $p \in A$ be a projection, i.e., $p^2 = p$ and $p^* = p$ and assume it is non-trivial $(p \notin \{0, 1_A\})$. Compute $\sigma(p)$.

Due Wednesday May 10, 2022 in the lecture or via e-mail