Operator Algebras

Summer Semester 2023

Exercise 1 (Finishing the proof of the positivity characterization theorem of the lecture)

Let A be a C^{*}-algebra and $a \in A^+$. Assume $c \in A^+$ with ca = ac and $c^2 = a$. Show that $c = \sqrt{a}$. Hint: Consider the case $A = C_0(X)$ first.

Exercise 2

Let A be *-algebra. An element $v \in A$ is called a partial isometry if v^*v is a projection.

- (a) Show that v is a partial isometry if and only if $v = vv^*v$. Show that in this case vv^* is a projection as well.
- (b) Let $A = \mathbb{C}^{d \times d}$ and let $p, q \in A$ be projections. If tr $p \leq \operatorname{tr} q$, then there exists a partial isometry $v \in A$ such that $v^*v = p$ and $vv^* \leq q$.
- (c) Two projections $p, q \in A$ are called Murray-von-Neumann equivalent if there exits a partial isometry $v \in A$ such that $v^*v = p$ and $vv^* = q$. Verify that it is an equivalence relation and describe the equivalence classes in the case of $A = \mathbb{C}^{d \times d}$.

Exercise 3

Let A be a separable C^{*}-algebra. Show that there exists a sequential approximate unit with the same properties as proven in the lecture, i.e., we can choose $\Lambda = \mathbb{N}$.

Exercise 4

Let \mathcal{H} be a separable Hilbert space with orthonormal basis $(u_n)_{n \in \mathbb{N}}$. Let $\Lambda := \{\lambda \subset \mathbb{N} : \lambda \text{ is finite}\}$ ordered by inclusion as in the existence proof in the lecture. For $\lambda \in \Lambda$ let $e_{\lambda} := \sum_{k \in \lambda} \langle u_k, \cdot \rangle u_k$. Show that $(e_{\lambda})_{\lambda \in \Lambda}$ is an approximate unit for the C^{*}-algebra of compact operators $\mathcal{K}(\mathcal{H})$.

Due Wednesday May 24, 2022 in the lecture or via e-mail