Summer Semester 2023

Sheet 7

Exercise 1 (GNS representation in finite dimensions)

Let ρ be a density matrix on \mathbb{C}^d , that is, $\rho \in \mathbb{C}^{d \times d}$ with $0 \leq \rho \leq 1$ and tr $\rho = 1$. Consider the state $\omega_{\rho} \in S(\mathbb{C}^{d \times d})$ given by

$$\omega_{\rho}(a) := \operatorname{tr}(\rho a).$$

- (a) Assume that all eigenvalues of ρ are strictly positive. Describe explicitly the GNS representation $(\mathcal{H}, \pi, \Omega)$ with respect to ω_{ρ} , i.e., give a concrete choice for $(\mathcal{H}, \pi, \Omega)$.
- (b) What happens if some eigenvalues of ρ are zero?

Exercise 2 (Irreducible representations and states on commutative algebras)

Let A be a C*-algebra and let $\pi: A \to \mathcal{L}(\mathcal{H})$ be an irreducible representation of A. Show the following.

(a) If $b \in A'$, i.e., ab = ba for all $a \in A$, then there exists $z \in \mathbb{C}$ such that $\pi(b) = z \operatorname{Id}_{\mathcal{H}}$.

Assume now that A is commutative.

- (b) We have $\mathcal{H} \cong \mathbb{C}$ and π is equivalent to a *-homomorphism $\chi \colon A \to \mathbb{C} \cong \mathcal{L}(\mathbb{C})$.
- (c) The pure states on A are exactly given by the characters \widehat{A} .

Exercise 3 (States on C(X))

Let X be a compact Hausdorff space. According to a version of Riesz' theorem there is a bijection between finite positive Borel measures μ on X and the positive linear functionals on C(X), which is given by

$$\mu \mapsto \phi_{\mu}, \quad \text{where } \phi_{\mu}(f) := \int_{X} f(x) \mathsf{d}\mu(x).$$

(a) Show that this bijection also yields a bijection between the space of all (Borel) probability measures on X and S(C(X)), the set of states of C(X). (b) Let μ be a probability measure, ϕ_{μ} defined as above and $(\mathcal{H}_{\phi_{\mu}}, \pi_{\phi_{\mu}}, \Omega_{\phi_{\mu}})$ be the GNS representation with respect to ϕ_{μ} . Show that there exists a unitary operator $U: \mathcal{H}_{\phi_{\mu}} \to L^2(X, \mu)$ such that, for all $f \in C(X)$,

$$U\pi_{\phi_{\mu}}(f) = M_f U, \qquad U\Omega_{\phi_{\mu}} = 1_X,$$

where $M_f(g) := f \cdot g, g \in L^2(X, \mu)$, denotes the multiplication operator by f on $L^2(X, \mu)$ and $1_X \in L^2(X, \mu)$ the constant function with value one.

(c) Which probability measures correspond to the pure states on C(X)?

Hint: You can use that C(X) is dense in $L^2(X, \mu)$.

Due Wednesday June 14, 2022 in the lecture or via e-mail