Summer Semester 2023

Exercise 1 (The algebra of matrices with entries in a C^* -algebra)

Let A be a C^{*}-algebra. For $d \in \mathbb{N}$, let $A^{d \times d}$ be the $d \times d$ matrices with entries in A with the pointwise addition, canonical matrix multiplication and involution, i.e. for $B, C \in A^{d \times d}$, $(BC)_{ij} := \sum_k B_{ik} C_{kj}$ and $(B^*)_{ij} := (B_{ji})^*$. It is clear that $A^{d \times d}$ is a *-algebra. Show that it also admits a (unique) C^{*}-norm and therefore becomes a C^{*}-algebra as well. Hints:

(1) First assume that A is a concrete C^* -algebra, i.e. $A \subseteq \mathcal{L}(\mathcal{H})$ for some Hilbert space \mathcal{H} . Then we have

 $A^{d \times d} \subseteq \mathcal{L}\left(\oplus_{l=1}^{d} \mathcal{H} \right)$

and can use the appropriate norm in $\mathcal{L}\left(\oplus_{l=1}^{d}\mathcal{H}\right)$.

(2) Reduce the general abstract case to the concrete case by using a famous theorem of the lecture.

Exercise 2 (Irreducible representations of matrix algebras)

Let $A = \mathbb{C}^{d \times d}$ for some $d \in \mathbb{N}$. Show that:

- (a) The canonical representation Id: $A \to A \cong \mathcal{L}(\mathbb{C}^d)$ is irreducible.
- (b) Every irreducible representation π of A is equivalent to the one in (a). Hint: First show that $\pi(\delta_{11}) \neq 0$ for every irreducible representation π . Then choose $v_1 = \pi(\delta_{11})\xi$ for some $\xi \in \mathbb{C}^d$ such that $||v_1|| = 1$ and, for each $i = 1, \ldots, d$, consider $v_i = \pi(\delta_{i1})v_1 = \pi(\delta_{i1})\xi$ and show that (v_1, \ldots, v_n) behaves under π as the standard basis under the identity representation.
- (c) $S_p(A)$ equipped with the weak-*-topology is homeomorphic to \mathbb{S}^{2d-1}/\sim , where $\mathbb{S}^{2d-1} := \{z \in \mathbb{C}^{2d} : ||z|| = 1\}$ and $v \sim w :\iff \exists z \in \mathbb{S}^1 \subseteq \mathbb{Z} : zv = w$ for $v, w \in \mathbb{S}^{2d-1}$.

Exercise 3 (Extensions of representations)

Let A be a C*-algebra and $\{0\} \neq I \subseteq A$ a closed ideal in A. Show that if $\pi: I \to \mathcal{L}(\mathcal{H})$ is a non-degenerate representation of I, then there exists a unique representation $\widetilde{\pi}: A \to \mathcal{L}(\mathcal{H})$ of A such that $\widetilde{\pi}|_I = \pi$. Hint: For every $\xi \in \mathcal{H}_0 := \pi(I)\mathcal{H}$, we find $\widetilde{\pi}(a)\xi = \lim_{\lambda} \pi(ae_{\lambda})\xi$ for a suitable approximate unit (e_{λ}) in I.

Due Wednesday June 21, 2022 in the lecture or via e-mail