Operator Algebras

Summer Semester 2023
Sheet 9

Exercise 1 (Tensor product polarization formula)
Let E be a vector space over \mathbb{R} or \mathbb{C}. Show that for $v_{1}, \ldots, v_{n} \in E$,

$$
\begin{aligned}
n!P_{+, n}\left(v_{1} \otimes \ldots \otimes v_{n}\right): & =\sum_{\tau \in S_{n}} v_{\tau(1)} \otimes \ldots \otimes v_{\tau(n)} \\
& =\frac{1}{2^{n-1}} \sum_{\sigma_{2}, \ldots, \sigma_{n} \in\{ \pm 1\}} \sigma_{2} \cdots \sigma_{n}\left(v_{1}+\sigma_{2} v_{2}+\ldots+\sigma_{n} v_{n}\right)^{\otimes n} .
\end{aligned}
$$

Hint: One possibility is to first show that

$$
\sum_{\tau \in S_{n}} v_{\tau(1)} \otimes \ldots \otimes v_{\tau(n)}=\int_{\Omega} X_{1}(\omega) \cdots X_{n}(\omega)\left(\sum_{j=1}^{n} X_{j}(\omega) v_{k}\right)^{\otimes n} \mathrm{~d} \mathbb{P}
$$

where (Ω, \mathbb{P}) is a probability space, X_{1}, \ldots, X_{n} stochastically independent real-valued random variables, which are normalized in the L^{2} sense and centered, i.e., $\int_{\Omega} X_{j} \mathrm{dP}=0$ and $\int_{\Omega} X_{j}^{2} \mathrm{~d} \mathbb{P}=1$. Then consider the concrete situation $\Omega=\{-1,1\}^{\mathbb{N}}, \mathbb{P}$ being product measure of $\frac{1}{2}\left(\delta_{-1}+\delta_{1}\right)$ and $X_{j}\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right):=x_{j}$.

Exercise 2 (Finite-dimensional CAR algebra)
Let E be a finite-dimensional vector space with orthonormal basis f_{1}, \ldots, f_{n}. Show that $\left(\mathbb{C}^{2 \times 2}\right)^{\otimes n}$ (with component-wise multiplication) is an (abstract) CAR algebra over E, where (some of) the generators are given by

$$
a\left(f_{k}\right)=\prod_{j=1}^{k-1}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)_{(j)}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)_{(k)}
$$

with $A_{(j)}:=\operatorname{Id} \otimes \cdots \otimes \underbrace{A}_{j \text {-th position }} \otimes \cdots \otimes \operatorname{Id} \in\left(\mathbb{C}^{2 \times 2}\right)^{\otimes n}$ for $A \in \mathbb{C}^{2 \times 2}$. Hint: In order to show that the $a(f), v \in E$, actually generate the whole algebra show that

$$
\begin{aligned}
\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)_{(k)}= & \alpha a\left(f_{k}\right) a^{*}\left(f_{k}\right)+\beta \prod_{j=1}^{k-1}\left(1-2 a^{*}\left(f_{j}\right) a\left(f_{j}\right)\right) a\left(f_{k}\right) \\
& +\gamma \prod_{j=1}^{k-1}\left(1-2 a^{*}\left(f_{j}\right) a\left(f_{j}\right)\right) a^{*}\left(f_{k}\right)+\delta a^{*}\left(f_{k}\right) a\left(f_{k}\right)
\end{aligned}
$$

for all $\alpha, \beta, \gamma, \delta \in \mathbb{C}$.

Exercise 3 (Fock representation is cyclic and irreducible)
Consider the canonical inclusion $\iota: \operatorname{CCR}_{F}(\mathfrak{h}) \rightarrow \mathcal{L}\left(\mathfrak{F}_{+}(\mathfrak{h})\right)$ as representation. Show the following
(a) The vacuum Ω is a cyclic vector for ι.
(b) For $f, g \in \mathfrak{h}$,

$$
\lim _{t \rightarrow 0} \frac{W(i t f)-\mathrm{Id}}{i t} \epsilon(g)=\phi(f) \epsilon(g), \quad \phi(f):=a_{+}^{*}(f)+a_{+}(f) .
$$

This implies that $\lim _{t \rightarrow 0} \frac{W(i t f)-\text { Id }}{i t} \psi=\phi(f) \psi$ for all $\psi \in \mathfrak{F}_{+}(\mathfrak{h}) \cap \mathfrak{F}_{\text {fin }}(\mathfrak{h})$.
(c) Any bounded operator $T \in \operatorname{CCR}_{F}(\mathfrak{h})^{\prime}$ satisfies $T \Omega=z \Omega$ for some $z \in \mathbb{C}$, and

$$
T a_{+}^{*}\left(f_{1}\right) \cdots a_{+}^{*}\left(f_{n}\right) \Omega=a_{+}^{*}\left(f_{1}\right) \cdots a_{+}^{*}\left(f_{n}\right) T \Omega .
$$

Hint: Use (b) and proceed as in the proof for the CAR. Use that $a_{+}(f)$ and $a_{+}^{*}(f)$ can be written as a linear combination of $\phi(g), g \in \mathfrak{h}$.
(d) The representation ι is irreducible.

Due Wednesday July 05, 2023 in the lecture or via e-mail

